EXACT CONTROLLABILITY FOR QUASILINEAR PERTURBATIONS OF KDV
被引:7
|
作者:
Baldi, Pietro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
Baldi, Pietro
[1
]
Floridia, Giuseppe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
Floridia, Giuseppe
[1
]
Haus, Emanuele
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
Haus, Emanuele
[1
]
机构:
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
control of PDEs;
exact controllability;
internal controllability;
KdV equation;
quasilinear PDEs;
observability of PDEs;
HUM;
Nash-Moser theorem;
IMPLICIT FUNCTION THEOREMS;
DE-VRIES EQUATION;
LOCAL-CONTROLLABILITY;
PERIODIC-SOLUTIONS;
STABILIZATION;
NASH;
KAM;
D O I:
10.2140/apde.2017.10.281
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove that the KdV equation on the circle remains exactly controllable in arbitrary time with localized control, for sufficiently small data, also in the presence of quasilinear perturbations, namely nonlinearities containing up to three space derivatives, having a Hamiltonian structure at the highest orders. We use a procedure of reduction to constant coefficients up to order zero (adapting a result of Baldi, Berti and Montalto (2014)), the classical Ingham inequality and the Hilbert uniqueness method to prove the controllability of the linearized operator. Then we prove and apply a modified version of the Nash-Moser implicit function theorems by Hormander (1976, 1985).
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
Fudan Univ, Lab Math Nonlinear Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Wang, Libin
Zhang, Yutao
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
机构:
Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
Univ Paris 06, Sorbonne Univ, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, FranceShandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China