A faster all-pairs shortest path algorithm for real-weighted sparse graphs

被引:0
|
作者
Pettie, S [1 ]
机构
[1] Univ Texas, Dept Comp Sci, Austin, TX 78712 USA
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a faster all-pairs shortest paths algorithm for arbitrary real-weighted directed graphs. The algorithm works in the fundamental comparison-addition model and runs in O(mn + n(2) log log n) time, where m and n are the number of edges & vertices, respectively. This is strictly faster than Johnson's algorithm (for arbitrary edge-weights) and Dijkstra's algorithm (for positive edge-weights) when m = o(n log n) and matches the running time of Hagerup's APSP algorithm, which assumes integer edge-weights and a more powerful model of computation.
引用
收藏
页码:85 / 97
页数:13
相关论文
共 50 条
  • [41] Unified all-pairs shortest path algorithms in the chordal hierarchy
    Han, K
    Sekharan, CN
    Sridhar, R
    DISCRETE APPLIED MATHEMATICS, 1997, 77 (01) : 59 - 71
  • [42] Enhanced OpenMP Algorithm to Compute All-Pairs Shortest Path on X86 Architectures
    Calderon, Sergio
    Rucci, Enzo
    Chichizola, Franco
    COMPUTER SCIENCE-CACIC 2023, 2024, 2123 : 46 - 61
  • [43] A Branch-Checking Algorithm for All-Pairs Shortest Paths
    Cees Duin
    Algorithmica , 2005, 41 : 131 - 145
  • [44] A simple O(n(2)) algorithm for the all-pairs shortest path problem on an interval graph
    Mirchandani, P
    NETWORKS, 1996, 27 (03) : 215 - 217
  • [45] A branch-checking algorithm for all-pairs shortest paths
    Duin, C
    ALGORITHMICA, 2005, 41 (02) : 131 - 145
  • [46] A survey of the all-pairs shortest paths problem and its variants in graphs
    Reddy, K. R. Udaya Kumar
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2016, 8 (01) : 16 - 40
  • [47] FAST PARALLEL ALGORITHM FOR ALL-PAIRS SHORTEST-PATH PROBLEM AND ITS VLSI IMPLEMENTATION
    DEY, S
    SRIMANI, PK
    IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1989, 136 (02): : 85 - 89
  • [48] Quantum Distributed Algorithm for the All-Pairs Shortest Path Problem in the CONGEST-CLIQUE Model
    Izumi, Taisuke
    Le Gall, Francois
    PROCEEDINGS OF THE 2019 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '19), 2019, : 84 - 93
  • [49] Does path cleaning help in dynamic all-pairs shortest paths?
    Demetrescu, C.
    Faruolo, P.
    Italiano, G. F.
    Thorup, M.
    ALGORITHMS - ESA 2006, PROCEEDINGS, 2006, 4168 : 732 - 743
  • [50] More effective crossover operators for the all-pairs shortest path problem
    Doerr, Benjamin
    Johannsen, Daniel
    Koetzing, Timo
    Neumann, Frank
    Theile, Madeleine
    THEORETICAL COMPUTER SCIENCE, 2013, 471 : 12 - 26