Self-Supervised Human Depth Estimation from Monocular Videos

被引:19
|
作者
Tan, Feitong [1 ]
Zhu, Hao [2 ]
Cui, Zhaopeng [3 ]
Zhu, Siyu [4 ]
Pollefeys, Marc [3 ]
Tan, Ping [1 ]
机构
[1] Simon Fraser Univ, Burnaby, BC, Canada
[2] Nanjing Univ, Nanjing, Jiangsu, Peoples R China
[3] Swiss Fed Inst Technol, Zurich, Switzerland
[4] Alibaba AI Labs, Hangzhou, Zhejiang, Peoples R China
关键词
SHAPE;
D O I
10.1109/CVPR42600.2020.00073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Previous methods on estimating detailed human depth often require supervised training with 'ground truth' depth data. This paper presents a self-supervised method that can be trained on YouTube videos without known depth, which makes training data collection simple and improves the generalization of the learned network. The self-supervised learning is achieved by minimizing a photo-consistency loss, which is evaluated between a video frame and its neighboring frames warped according to the estimated depth and the 3D non-rigid motion of the human body. To solve this non-rigid motion, we first estimate a rough SMPL model at each video frame and compute the non-rigid body motion accordingly, which enables self-supervised learning on estimating the shape details. Experiments demonstrate that our method enjoys better generalization and performs much better on data in the wild.
引用
收藏
页码:647 / 656
页数:10
相关论文
共 50 条
  • [41] Deep Digging into the Generalization of Self-Supervised Monocular Depth Estimation
    Bae, Jinwoo
    Moon, Sungho
    Im, Sunghoon
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 187 - 196
  • [42] Constant Velocity Constraints for Self-Supervised Monocular Depth Estimation
    Zhou, Hang
    Greenwood, David
    Taylor, Sarah
    Gong, Han
    CVMP 2020: THE 17TH ACM SIGGRAPH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION, 2020,
  • [43] A LIGHTWEIGHT SELF-SUPERVISED TRAINING FRAMEWORK FOR MONOCULAR DEPTH ESTIMATION
    Heydrich, Tim
    Yang, Yimin
    Du, Shan
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2265 - 2269
  • [44] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation
    Peng, Rui
    Wang, Ronggang
    Lai, Yawen
    Tang, Luyang
    Cai, Yangang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15540 - 15549
  • [45] Self-Supervised Monocular Depth Hints
    Watson, Jamie
    Firman, Michael
    Brostow, Gabriel J.
    Turmukhambetov, Daniyar
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 2162 - 2171
  • [46] Self-Supervised Monocular Depth Underwater
    Amitai, Shlomi
    Klein, Itzik
    Treibitz, Tali
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 1098 - 1104
  • [47] Adv-Depth: Self-Supervised Monocular Depth Estimation With an Adversarial Loss
    Li, Kunhong
    Fu, Zhiheng
    Wang, Hanyun
    Chen, Zonghao
    Guo, Yulan
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 638 - 642
  • [48] RA-Depth: Resolution Adaptive Self-supervised Monocular Depth Estimation
    He, Mu
    Hui, Le
    Bian, Yikai
    Ren, Jian
    Xie, Jin
    Yang, Jian
    COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 565 - 581
  • [49] HR-Depth: High Resolution Self-Supervised Monocular Depth Estimation
    Lyu, Xiaoyang
    Liu, Liang
    Wang, Mengmeng
    Kong, Xin
    Liu, Lina
    Liu, Yong
    Chen, Xinxin
    Yuan, Yi
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2294 - 2301
  • [50] Self-Supervised Monocular Depth Estimation With Self-Perceptual Anomaly Handling
    Zhang, Yourun
    Gong, Maoguo
    Zhang, Mingyang
    Li, Jianzhao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (12) : 1 - 15