An Autonomous Trader Agent for the Stock Market Based on Online Sequential Extreme Learning Machine Ensemble

被引:0
|
作者
Cavalcante, Rodolfo C. [1 ,2 ]
Oliveira, Adriano L. I. [2 ]
机构
[1] Univ Fed Alagoas, Campus Arapiraca, BR-57309005 Arapiraca, Alagoas, Brazil
[2] Univ Fed Pernambuco, Ctr Informat CIn, BR-50740560 Recife, PE, Brazil
关键词
NEURAL-NETWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Financial markets are very important to the economical and social organization of modern society. In this kind of market, the success of an investor depends on the quality of the information he uses to trade in the market, and on how fast he is able to take decisions. In the literature, several statistical and soft computing mechanisms have been proposed in order to support investors decision in the financial market. In this work we propose an autonomous trader agent that is able to compute technical indicators of the stock market and take decisions on buying or selling stocks. Our trader agent is based on a single hidden layer feedforward (SLFN) ensemble trained with online sequential extreme learning machine (OS-ELM), a variant of ELM that is able to learn data one-by-one and dynamically accommodate changes in the market. In addition, we propose a set of trading rules that guides the trader agent in order to improve the potential profit. Experimental results on real dataset from Brazilian stock market showed that our proposed trader agent based on OS-ELM ensemble is able to increase the financial gain when compared with other approaches proposed in literature.
引用
下载
收藏
页码:1424 / 1431
页数:8
相关论文
共 50 条
  • [31] Human Daily Activity Recognition Based on Online Sequential Extreme Learning Machine
    Song, Yanan
    Liu, Zhigang
    Wang, Jinkuan
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 3226 - 3229
  • [32] Online Sequential Extreme Learning Machine Algorithms Based on Maximum Correntropy Criterion
    Wang, Wenyue
    Shi, Chunfen
    Wang, Wanli
    Dang, Lujuan
    Wang, Shiyuan
    Duan, Shukai
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 1092 - 1098
  • [33] Fuzziness-based online sequential extreme learning machine for classification problems
    Cao, Weipeng
    Gao, Jinzhu
    Ming, Zhong
    Cai, Shubin
    Shan, Zhiguang
    SOFT COMPUTING, 2018, 22 (11) : 3487 - 3494
  • [34] Fuzziness-based online sequential extreme learning machine for classification problems
    Weipeng Cao
    Jinzhu Gao
    Zhong Ming
    Shubin Cai
    Zhiguang Shan
    Soft Computing, 2018, 22 : 3487 - 3494
  • [35] An Online Sequential Extreme Learning Machine Approach to WiFi Based Indoor Positioning
    Zou, Han
    Jiang, Hao
    Lu, Xiaoxuan
    Xie, Lihua
    2014 IEEE WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2014, : 111 - 116
  • [36] Weighted Online Sequential Extreme Learning Machine for Class Imbalance Learning
    Mirza, Bilal
    Lin, Zhiping
    Toh, Kar-Ann
    NEURAL PROCESSING LETTERS, 2013, 38 (03) : 465 - 486
  • [37] Weighted Online Sequential Extreme Learning Machine for Class Imbalance Learning
    Bilal Mirza
    Zhiping Lin
    Kar-Ann Toh
    Neural Processing Letters, 2013, 38 : 465 - 486
  • [38] Online Sequential Double Parallel Extreme Learning Machine for Classifications
    Mingchen YAO
    Chao ZHANG
    Wei WU
    Journal of Mathematical Research with Applications, 2016, 36 (05) : 621 - 630
  • [39] Hematocrit estimation using online sequential extreme learning machine
    Hieu Trung Huynh
    Won, Yonggwan
    Kim, Jinsul
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2015, 26 : S2025 - S2032
  • [40] SLOSELM: Self Labeling Online Sequential Extreme Learning Machine
    Zhao, Zhongtang
    Liu, Li
    Li, Lingling
    Ma, Qian
    INTERNET AND DISTRIBUTED COMPUTING SYSTEMS, IDCS 2016, 2016, 9864 : 179 - 189