Gravity and BF theory defined in bounded regions

被引:25
|
作者
Husain, V
Major, S
机构
[1] Ctr. for Gravitational Phys./Geom., Department of Physics, Pennsylvania State University, University Park
基金
美国国家科学基金会;
关键词
BLACK-HOLE; GENERAL-RELATIVITY; GRAVITATIONAL ACTION; FIELD-THEORY; EDGE STATES; VARIABLES; MECHANICS; ENTROPY; ENERGY; SYSTEM;
D O I
10.1016/S0550-3213(97)00371-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study Einstein gravity in a finite spatial region. By requiring a well-defined variational principle, we identify all local boundary conditions, derive surface observables, and compute their algebra. The observables arise as induced surface terms, which contribute to a non-vanishing Hamiltonian. Unlike the asymptotically flat case, we find that there are an infinite number of surface observables. We give a similar analysis for SU(2) BF theory. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:381 / 401
页数:21
相关论文
共 50 条
  • [21] BF gravity and the Immirzi parameter
    Capovilla, R
    Montesinos, M
    Prieto, VA
    Rojas, E
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (05) : L49 - L52
  • [22] Noether currents for BF gravity
    Montesinos, M
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (16) : 3569 - 3575
  • [23] Algebra of Implicitly Defined Constraints for Gravity as the General Form of Embedding Theory
    Paston, S. A.
    Semenova, E. N.
    Franke, V. A.
    Sheykin, A. A.
    GRAVITATION & COSMOLOGY, 2017, 23 (01): : 1 - 7
  • [24] Algebra of implicitly defined constraints for gravity as the general form of embedding theory
    S. A. Paston
    E. N. Semenova
    V. A. Franke
    A. A. Sheykin
    Gravitation and Cosmology, 2017, 23 : 1 - 7
  • [25] Noncommutative topological and Einstein gravity from noncommutative SL(2,C) BF theory
    Garcia-Compean, H.
    Obregon, O.
    Ramirez, C.
    Sabido, M.
    TOPICS IN MATHEMATICAL PHYSICS, GENERAL RELATIVITY AND COSMOLOGY IN HONOR OF JERZY PLEBANSKI, 2006, : 217 - +
  • [26] BOUNDED-RANK TENSORS ARE DEFINED IN BOUNDED DEGREE
    Draisma, Jan
    Kuttler, Jochen
    DUKE MATHEMATICAL JOURNAL, 2014, 163 (01) : 35 - 63
  • [27] Stable and 'bounded excursion' gravastars, and black holes in Einstein's theory of gravity
    Rocha, P.
    Chan, R.
    da Silva, M. F. A.
    Wang, Anzhong
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2008, (11):
  • [28] TOPOLOGIES DEFINED BY BOUNDED SETS
    ARNOLD, BH
    DUKE MATHEMATICAL JOURNAL, 1951, 18 (03) : 631 - 642
  • [29] TOPOLOGIES DEFINED BY BOUNDED SETS
    ARNOLD, BH
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) : 305 - 306
  • [30] Edge dynamics for BF theories and gravity
    Momen, A
    PHYSICS LETTERS B, 1997, 394 (3-4) : 269 - 274