Simulation of optical resonators using DGTD and FDTD

被引:40
|
作者
Niegemann, J. [1 ,2 ]
Pernice, W. [3 ]
Busch, K. [1 ,2 ]
机构
[1] Univ Karlsruhe, Inst Theoret Festkorperphys, D-76128 Karlsruhe, Germany
[2] Univ Karlsruhe, DFG, Ctr Funct Nanostruct, D-76128 Karlsruhe, Germany
[3] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
来源
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS | 2009年 / 11卷 / 11期
关键词
finite-difference time-domain; FDTD; discontinuous Galerkin; DGTD; optical microresonators; SUBGRIDDING ALGORITHM; MAXWELLS EQUATIONS; GROUP DELAY; RING; FILTERS; DISPERSION; WAVE; TRANSMISSION; MICROCAVITY; DESIGN;
D O I
10.1088/1464-4258/11/11/114015
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a comparative analysis of the finite-difference time-domain method (FDTD) and the discontinuous Galerkin time-domain (DGTD) method for the simulation of integrated optical microresonators. It is found that FDTD suffers from phase errors and is limited by the staircasing approximation. A further restriction stems from only second-order accuracy which limits the geometrical problem size that can be analysed with given computational hardware. Particularly for simulations of high-Q optical resonators, those problems prevent sufficient convergence with reasonable grid spacing. The DGTD method, on the other hand, allows for the approximation of curved surfaces with high accuracy using triangular elements. Combined with the exponential convergence, the DGTD approach outperforms the FDTD method and is thus a suitable candidate for large-scale simulations.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Transient Heterogeneous Electromagnetic Simulation With DGTD and Behavioral Macromodel
    Zhang, Huan Huan
    Jiang, Li Jun
    Yao, He Ming
    Zhang, Yu
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2017, 59 (04) : 1152 - 1160
  • [42] FDTD Optical Simulation for Organic Solar Cells Incorporated with Antireflection Nanostructures
    Kubota, Shigeru
    Kanomata, Kensaku
    Ahmmad, Bashir
    Mizuno, Jun
    Hirose, Fumihiko
    JOURNAL OF ADVANCED SIMULATION IN SCIENCE AND ENGINEERING, 2020, 7 (01): : 82 - 88
  • [43] Underwater FDTD ELF Simulation Using Dedicated Hardware
    Xia, Yang
    Sullivan, Dennis M.
    2010 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2010,
  • [44] Simulation of a Nonlinear Frequency Multiplier using the FDTD Technique
    Kast, Joshua M.
    Elsherbeni, Atef Z.
    2020 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (2020 ACES-MONTEREY), 2020,
  • [45] FDTD numerical simulation of the trapping force of microsphere in single optical tweezers
    Hu Geng-Jun
    Li Jing
    Long Qian
    Tao Tao
    Zhang Gong-Xuan
    Wu Xiao-Ping
    ACTA PHYSICA SINICA, 2011, 60 (03)
  • [46] Performance Evaluation of the ADI-FDTD Method on the Simulation of Optical Devices
    Sa de Alcantara, Licinius Dimitri
    De Francisco, Carlos Alberto
    2019 SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE (SBFOTON IOPC), 2019,
  • [47] The application of DGTD in simulation of the open-ended cavity
    Yang, Qian
    Wei, Bing
    Li, Linqian
    Wang, Yuqing
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM 2020), 2020, : 211 - 212
  • [48] A Hybrid DGTD and FDTD-TL Method for Solving Field-to-Wire Coupling Problems
    Qin, Xuebin
    Ren, Qiang
    2023 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION, NEMO, 2023, : 51 - 53
  • [49] FDTD Simulation of an Optical Absorber based on CPML absorbing boundary condition
    Cantero, Sergio
    Huang, Yian
    Tseng, Snow H.
    BIOMEDICAL APPLICATIONS OF LIGHT SCATTERING VIII, 2014, 8952
  • [50] FDTD simulation of optical force under non-ideal conditions
    Hu, Mengzhu
    Li, Nan
    Li, Wenqiang
    Wang, Xia
    Hu, Huizhu
    OPTICS COMMUNICATIONS, 2022, 505