Simulation of optical resonators using DGTD and FDTD

被引:40
|
作者
Niegemann, J. [1 ,2 ]
Pernice, W. [3 ]
Busch, K. [1 ,2 ]
机构
[1] Univ Karlsruhe, Inst Theoret Festkorperphys, D-76128 Karlsruhe, Germany
[2] Univ Karlsruhe, DFG, Ctr Funct Nanostruct, D-76128 Karlsruhe, Germany
[3] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
来源
关键词
finite-difference time-domain; FDTD; discontinuous Galerkin; DGTD; optical microresonators; SUBGRIDDING ALGORITHM; MAXWELLS EQUATIONS; GROUP DELAY; RING; FILTERS; DISPERSION; WAVE; TRANSMISSION; MICROCAVITY; DESIGN;
D O I
10.1088/1464-4258/11/11/114015
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a comparative analysis of the finite-difference time-domain method (FDTD) and the discontinuous Galerkin time-domain (DGTD) method for the simulation of integrated optical microresonators. It is found that FDTD suffers from phase errors and is limited by the staircasing approximation. A further restriction stems from only second-order accuracy which limits the geometrical problem size that can be analysed with given computational hardware. Particularly for simulations of high-Q optical resonators, those problems prevent sufficient convergence with reasonable grid spacing. The DGTD method, on the other hand, allows for the approximation of curved surfaces with high accuracy using triangular elements. Combined with the exponential convergence, the DGTD approach outperforms the FDTD method and is thus a suitable candidate for large-scale simulations.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Simulation of Optical Devices Using Parallel FDTD Method
    Liu Xin
    光学学报, 2003, (S1) : 307 - 308
  • [2] Numerical simulation of microstrip resonators and filters using the ADI-FDTD method
    Namiki, T
    Ito, K
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2001, 49 (04) : 665 - 670
  • [3] Hybrid DGTD method with FDTD/SETD/FETD
    Sun, Qingtao
    Liu, Qing Huo
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 233 - 234
  • [4] Simulation of nonlinear optical waveguide structure by using FDTD technique
    Shabat, MM
    Barakat, NM
    Al-azab, S
    Jäger, D
    OPTICS FOR THE QUALITY OF LIFE, PTS 1 AND 2, 2003, 4829 : 507 - 509
  • [5] Optical simulation of surface textured TCO using FDTD method
    Elviyanti, I. L.
    Purwanto, H.
    Kusumandari
    10TH JOINT CONFERENCE ON CHEMISTRY, 2016, 107
  • [6] A hybrid DGTD-FDTD method for RCS calculations
    Garcia, Salvador G.
    Fernandez Pantoja, M.
    Rubio Bretones, A.
    Gomez Martin, R.
    Gedney, Stephen D.
    2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 3228 - +
  • [7] Making a Synthesis of FDTD and DGTD Schemes for Computational Electromagnetics
    Balsara, Dinshaw S.
    Simpson, Jamesina J.
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2020, 5 : 99 - 118
  • [8] Simulation of optical waveguides with FDTD method
    Yang, ZY
    Xu, ZN
    Lu, DS
    Zhu, DQ
    Li, P
    FIBER OPTICS AND OPTOELECTRONICS FOR NETWORK APPLICATIONS, 2001, 4603 : 42 - 47
  • [9] Three-dimensional optical pulse simulation using the FDTD method
    Sullivan, D
    Liu, J
    Kuzyk, M
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2000, 48 (07) : 1127 - 1133
  • [10] Three dimensional nonlinear optical fiber simulation using the FDTD method
    Sullivan, D
    Kuzyk, M
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-4: TRANSMITTING WAVES OF PROGRESS TO THE NEXT MILLENNIUM, 2000, : 1496 - 1499