Semiflexible polymer on an anisotropic Bethe lattice

被引:5
|
作者
Stilck, JF [1 ]
Cordeiro, CE [1 ]
do Amaral, RLPG [1 ]
机构
[1] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil
关键词
D O I
10.1103/PhysRevE.61.5520
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The mean-square end-to-end distance of an N-step polymer on a Bethe lattice is calculated. We consider semiflexible polymers placed on isotropic and anisotropic lattices. The distance on the Cayley tree is defined by embedding the tree on a sufficiently high-dimensional Euclidean space, considering that every bend of the polymer defines a direction orthogonal to all the previous ones. In the isotropic case, the result obtained for the mean-square end-to-end distance turns out to be identical to the one obtained for ideal chains without immediate returns on an hypercubic lattice with the same coordination number of the Bethe lattice. For the general case, we obtain asymptotic behavior in both the semiflexible and almost rigid limits.
引用
收藏
页码:5520 / 5527
页数:8
相关论文
共 50 条
  • [21] NOTE ON LATTICE VIBRATION OF BETHE LATTICE
    WADA, K
    FUJITA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1977, 58 (05): : 1655 - 1657
  • [22] A LATTICE MODEL FOR SELF-AVOIDING AND MUTUALLY AVOIDING SEMIFLEXIBLE POLYMER-CHAINS
    BAWENDI, MG
    FREED, KF
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (06): : 3720 - 3730
  • [23] Anisotropic random networks of semiflexible polymers
    Benetatos, Panayotis
    Zippelius, Annette
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (19)
  • [24] ANISOTROPIC SPIN-LATTICE RELAXATION IN POLYMER MELTS
    GRIGOREV, VP
    [J]. VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA B, 1981, 23 (03): : 201 - 203
  • [25] Relaxation of a semiflexible grafted polymer
    Nam, Gimoon
    Johner, Albert
    Lee, Nam-Kyung
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (16):
  • [26] Shapes of semiflexible polymer rings
    Alim, Karen
    Frey, Erwin
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (19)
  • [27] Semiflexible polymer in the cactus approximation
    Pretti, M
    [J]. PHYSICAL REVIEW E, 2002, 66 (06): : 9 - 061802
  • [28] Modeling semiflexible polymer networks
    Broedersz, C. P.
    MacKintosh, F. C.
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (03) : 995 - 1036
  • [29] ON THE PACKING PRINCIPLE OF SEMIFLEXIBLE LATTICE POLYMERS
    BAUMGARTNER, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18): : L971 - L974
  • [30] Entanglement complexity of semiflexible lattice polygons
    Orlandini, E
    Tesi, MC
    Whittington, SG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (47): : L795 - L800