Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries

被引:42
|
作者
Cheng, Fangyuan [1 ]
Zhang, Xiaoyu [1 ]
Wei, Peng [1 ]
Sun, Shixiong [1 ]
Xu, Yue [1 ]
Li, Qing [1 ]
Fang, Chun [1 ]
Han, Jiantao [1 ]
Huang, Yunhui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Li-ion batteries; Electrolyte additives; Cathode-electrolyte-interface; High-voltage; Ni-rich NCM; LITHIUM-ION; PERFORMANCE; MECHANISM; DEGRADATION; STABILITY;
D O I
10.1016/j.scib.2022.10.007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The LiNi0.8Co0.1Mn0.1O2 (Ni-rich NCM) cathode materials suffer from electrochemical performance degradation upon cycling due to detrimental cathode interface reactions and irreversible surface phase transition when operating at a high voltage (>= 4.5 V). Herein, a traditional carbonate electrolyte with lithium difluoro(oxalato)borate (LiDFOB) and tris(trimethylsilyl)phosphate (TMSP) as dual additives that can preferentially oxidize and decompose to form a stable F, B and Si-rich cathode-electrolyte interphase (CEI) that effectively inhibits continual electrolyte decomposition, transition metal dissolves, surface phase transition and gas generation. In addition, TMSP also removes trace H2O/HF in the electrolyte to increase the electrolyte stability. Owing to the synergistic effect of LiDFOB and TMSP, the Li/ LiNi0.8Co0.1Mn0.1O2 half cells exhibit the capacity retention 76.3% after 500 cycles at a super high voltage of 4.7 V, the graphite/LiNi0.8Co0.1Mn0.1O2 full cells exhibit high capacity retention of 82.8% after 500 cycles at 4.5 V, and Li/LiNi0.8Co0.1Mn0.1O2 pouch cells exhibit high capacity retention 94% after 200 cycles at 4.5 V. This work is expected to provide an effective electrolyte optimizing strategy compatible with high energy density lithium-ion battery manufacturing systems. (c) 2022 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:2225 / 2234
页数:10
相关论文
共 50 条
  • [31] Revealing the surface modification effect on Li-ion insertion into Ni-rich NCM cathode material by cyclic voltammetry
    Ivanishchev, Aleksandr V.
    Ivanishcheva, Irina A.
    Lee, Suhyun
    Kim, Jae-Joong
    Kim, Young-Je
    Bae, Changgeun
    Nam, Sang-Cheol
    Song, Jung-Hoon
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 950
  • [32] Recent Advances in Enhanced Performance of Ni-Rich Cathode Materials for Li-Ion Batteries: A Review
    Butt, Annam
    Ali, Ghulam
    Kubra, Khadija Tul
    Sharif, Rehana
    Salman, Ayesha
    Bashir, Muzaffar
    Jamil, Sidra
    ENERGY TECHNOLOGY, 2022, 10 (03)
  • [33] On the Sensitivity of the Ni-rich Layered Cathode Materials for Li-ion Batteries to the Different Calcination Conditions
    Ronduda, Hubert
    Zybert, Magdalena
    Szczesna-Chrzan, Anna
    Trzeciak, Tomasz
    Ostrowski, Andrzej
    Szymanski, Damian
    Wieczorek, Wladyslaw
    Rarog-Pilecka, Wioletta
    Marcinek, Marek
    NANOMATERIALS, 2020, 10 (10) : 1 - 21
  • [34] Regulating the cationic rearrangement of Ni-rich layered oxide cathode for high-performance Li-ion batteries
    Vadivel, Selvamani
    Srimanon, Krisara
    Sawangphruk, Montree
    JOURNAL OF POWER SOURCES, 2022, 537
  • [35] Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries
    Hwang, Sooyeon
    Kim, Dong Hyun
    Chung, Kyung Yoon
    Chang, Wonyoung
    APPLIED PHYSICS LETTERS, 2014, 105 (10)
  • [36] Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries
    de Biasi, Lea
    Schwarz, Bjoern
    Brezesinski, Torsten
    Hartmann, Pascal
    Janek, Juergen
    Ehrenberg, Helmut
    ADVANCED MATERIALS, 2019, 31 (26)
  • [37] Synthesis and analysis of NCM cathode materials for high performance Li-Ion batteries
    Fetcenko, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [38] Rational design of Li off-stoichiometric Ni-rich layered cathode materials for Li-ion batteries
    Song, Seok Hyun
    Hong, Seokjae
    Cho, Moses
    Yoo, Jong-Gyu
    Jin, Hyeong Min
    Lee, Sang-Hyuk
    Avdeev, Maxim
    Ikeda, Kazutaka
    Kim, Jongsoon
    Nam, Sang Cheol
    Yu, Seung-Ho
    Park, Inchul
    Kim, Hyungsub
    CHEMICAL ENGINEERING JOURNAL, 2022, 448
  • [39] Improved High Voltage Performance of Li-ion Conducting Coated Ni-rich NMC Cathode Materials for Rechargeable Li Battery
    Gupta, Himani
    Singh, Shishir K.
    Srivastava, Nitin
    Meghnani, Dipika
    Tiwari, Rupesh K.
    Mishra, Raghvendra
    Patel, Anupam
    Tiwari, Anurag
    Saroj, Achchhe L.
    Singh, Rajendra Kumar
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) : 13878 - 13889
  • [40] Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries
    Sun, H. Hohyun
    Kim, Un-Hyuck
    Park, Jeong-Hyeon
    Park, Sang-Wook
    Seo, Dong-Hwa
    Heller, Adam
    Mullins, C. Buddie
    Yoon, Chong S.
    Sun, Yang-Kook
    NATURE COMMUNICATIONS, 2021, 12 (01)