High Repetition Rate, TEM00 Mode, Compact Sub-Nanosecond 532 nm Laser

被引:3
|
作者
Meng, Dongdong [1 ,2 ,3 ,4 ]
Wang, Tianqi [1 ]
Zhou, Mi [5 ]
Qiao, Zhanduo [1 ]
Liu, Xiaolong [1 ]
Fan, Zhongwei [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Optoelect, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] HARGLO Appl Laser Technol Inst Co Ltd, Tianjin 300000, Peoples R China
[5] Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 09期
关键词
laser remote sensing; photon-counting lidar; microchip laser; passively Q-switching; compact solid-state lasers; POWER;
D O I
10.3390/app12094428
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a critical transmitter, compact 532 nm lasers operating on high repetition and short pulse widths have been used widely for airborne or space-borne laser active remote sensing. We developed a free space pumped TEM00 mode sub-nanosecond 532 nm laser that occupied a volume of less than 125 mm x 50 mm x 40 mm (0.25 L). The fundamental 1064 nm laser consists of a passively Q-switched composite crystal microchip laser and an off-axis, two-pass power amplifier. The pump sources were two single-emitter semiconductor laser diodes (LD) with 808 nm wavelengths and a maximum continuous wave (CW) power of 10 W each. The average power of the fundamental 1064 nm laser was 1.26 W, with the laser operating at 16 kHz repetition rates and 857 ps pulse widths. Since the beam distortion would be severe in microchip lasers due to the increase in heat load, in order to obtain a high beam quality of 532 nm, the beam distortion in our experiment amplifying the fundamental laser was compensated by adjusting the distribution of the pumping beam. Furthermore, in the critical phase matching (CPM) regime for the second harmonic generation (SHG), a Type I LiB3O5 (LBO) crystal obtained 770 ps, a beam quality of M-2 < 1.2, and a 16 kHz pulse output at 532 nm, which was better than 0.6 W average power.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] High-Repetition-Rate and High-Peak-Power Sub-Nanosecond 1064 nm Electro-Optic Q-Switched Laser
    Guo, Jing
    Zhang, Baofu
    He, Guangyuan
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2021, 33 (14) : 731 - 734
  • [12] High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design
    Chard, S. P.
    Shardlow, P. C.
    Damzen, M. J.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 97 (02): : 275 - 280
  • [13] High Repetition Rate Sub-Nanosecond Dual-Wavelength Solid-State Laser for Airborne Lidar
    Lu Jun
    Ding Jianyong
    He Yang
    Yu Guangli
    Yang Bin
    Yao Hongquan
    Zhou Jun
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (08)
  • [14] Laser Diode Pumping High-stability 1047 nm TEM00 Mode CW Nd: YLiF4 Laser
    H. Y. Shen
    R. F. Wu
    Z. D. Zeng
    W. X. Lin
    R. R. Zeng
    Y. P. Zhou
    G. F. Yu
    C. H. Huang (Fujian Institute of Research on the Structure of Matter
    ChineseJournalofLasers, 2000, (02) : 103 - 106
  • [15] Compact and high repetition rate Kerr-lens mode-locked 532 nm Nd:YVO4 laser
    Li, Zuohan
    Peng, Jiying
    Yuan, Ruixia
    Wang, Tongtong
    Yao, Jianquan
    Zheng, Yi
    LASER PHYSICS, 2015, 25 (11)
  • [16] PICOSECOND PULSES, TEM00 MODE, MODE-LOCKED RUBY LASER
    CUBEDDU, R
    POLLONI, R
    SACCHI, CA
    SVELTO, O
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1969, QE 5 (09) : 470 - &
  • [17] FAR INFRARED-LASER RESONATOR FOR TEM00 MODE OPERATION
    HEPPNER, J
    APPLIED OPTICS, 1978, 17 (10): : 1488 - 1489
  • [18] High-efficiency 17 W, 80 MHz repetition rate, passively mode-locked TEM00 Nd:YAG oscillator pumped at 885 nm
    Zhang, X. -F.
    Li, F. -Q.
    Zong, N.
    Le, X. -Y.
    Cui, D. -F.
    Xu, Z. -Y.
    LASER PHYSICS, 2011, 21 (03) : 435 - 438
  • [19] CRITERIA FOR DESIGN AND CONTRUCTION OF A COMPACT HIGH GAIN TEM00 HE-NE LASER
    REDAELLI, G
    VACUUM, 1971, 21 (06) : 207 - &
  • [20] Solar-Pumped TEM00 Mode Nd:YAG laser
    Liang, Dawei
    Almeida, Joana
    OPTICS EXPRESS, 2013, 21 (21): : 25107 - 25112