Heat flux in turbulent Rayleigh-Benard convection: Predictions derived from a boundary layer theory

被引:9
|
作者
Tai, N. C. [1 ,2 ]
Ching, Emily S. C. [1 ,2 ]
Zwirner, Lukas [3 ]
Shishkina, Olga [3 ]
机构
[1] Chinese Univ Hong Kong, Inst Theoret Phys, Shatin, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
[3] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
关键词
Analytical results - Boundary layer equations - Boundary layer theory - Eddy viscosity - Horizontal pressure - Rayleigh number - Velocity fluctuations - Weak dependences;
D O I
10.1103/PhysRevFluids.6.033501
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using a closed set of boundary layer equations [E. S. C. Ching et al., Phys. Rev. Research 1, 033037 (2019)] for turbulent Rayleigh-Benard convection, we derive analytical results for the dependence of the heat flux, measured by the Nusselt number (Nu), on the Reynolds (Re) and Prandtl (Pr) numbers and two parameters that measure fluctuations in the regime where the horizontal pressure gradient is negligible. This regime is expected to be reached at sufficiently high Rayleigh numbers for a fluid of any given Prandtl number. In the high-Pr limit, Nu = F-1(k(1))(RePr1/3)-Pr-1/2 and, in the low-Pr limit, Nu tends to pi(-1/2RePr1/2)-Pr-1/2, where F-1(k(1)) has a weak dependence on the parameter k(1) in the eddy viscosity that measures velocity fluctuations. These theoretical results further reveal a close resemblance of the scaling dependencies of heat flux in steady forced convection and turbulent RayleighBenard convection and this finding solves a puzzle in our present understanding of heat transfer in turbulent Rayleigh-Benard convection.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Boundary layers in rotating weakly turbulent Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Clercx, Herman J. H.
    Lohse, Detlef
    [J]. PHYSICS OF FLUIDS, 2010, 22 (08)
  • [32] Matched boundary layers in turbulent Rayleigh-Benard convection of mercury
    Segawa, T
    Naert, A
    Sano, M
    [J]. PHYSICAL REVIEW E, 1998, 57 (01): : 557 - 560
  • [33] Boundary Zonal Flow in Rotating Turbulent Rayleigh-Benard Convection
    Zhang, Xuan
    van Gils, Dennis P. M.
    Horn, Susanne
    Wedi, Marcel
    Zwirner, Lukas
    Ahlers, Guenter
    Ecke, Robert E.
    Weiss, Stephan
    Bodenschatz, Eberhard
    Shishkina, Olga
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (08)
  • [34] SHEARED BOUNDARY-LAYERS IN TURBULENT RAYLEIGH-BENARD CONVECTION
    SOLOMON, TH
    GOLLUB, JP
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (20) : 2382 - 2385
  • [35] Thermal and viscous boundary layers in turbulent Rayleigh-Benard convection
    Scheel, J. D.
    Kim, E.
    White, K. R.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 711 : 281 - 305
  • [36] Asymmetries in Turbulent Rayleigh-Benard Convection
    du Puits, Ronald
    Resagk, Christian
    Thess, Andre
    [J]. PROGRESS IN TURBULENCE III, 2010, 131 : 179 - 182
  • [37] The turbulent regimes of Rayleigh-Benard convection
    Chavanne, X
    Chilla, F
    Castaing, B
    Chabaud, B
    Hebral, B
    Roche, P
    [J]. ADVANCES IN TURBULENCE VII, 1998, 46 : 461 - 464
  • [38] Structure of thermal boundary layers in turbulent Rayleigh-Benard convection
    du Puits, R.
    Resagk, C.
    Tilgner, A.
    Busse, F. H.
    Thess, A.
    [J]. JOURNAL OF FLUID MECHANICS, 2007, 572 : 231 - 254
  • [39] Boundary layer analysis in turbulent Rayleigh-Benard convection in air: Experiment versus simulation
    Li, Ling
    Shi, Nan
    du Puits, Ronald
    Resagk, Christian
    Schumacher, Joerg
    Thess, Andre
    [J]. PHYSICAL REVIEW E, 2012, 86 (02)
  • [40] Turbulent superstructures in Rayleigh-Benard convection
    Pandey, Ambrish
    Scheel, Janet D.
    Schumacher, Joerg
    [J]. NATURE COMMUNICATIONS, 2018, 9