Heat flux in turbulent Rayleigh-Benard convection: Predictions derived from a boundary layer theory

被引:9
|
作者
Tai, N. C. [1 ,2 ]
Ching, Emily S. C. [1 ,2 ]
Zwirner, Lukas [3 ]
Shishkina, Olga [3 ]
机构
[1] Chinese Univ Hong Kong, Inst Theoret Phys, Shatin, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
[3] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
关键词
Analytical results - Boundary layer equations - Boundary layer theory - Eddy viscosity - Horizontal pressure - Rayleigh number - Velocity fluctuations - Weak dependences;
D O I
10.1103/PhysRevFluids.6.033501
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using a closed set of boundary layer equations [E. S. C. Ching et al., Phys. Rev. Research 1, 033037 (2019)] for turbulent Rayleigh-Benard convection, we derive analytical results for the dependence of the heat flux, measured by the Nusselt number (Nu), on the Reynolds (Re) and Prandtl (Pr) numbers and two parameters that measure fluctuations in the regime where the horizontal pressure gradient is negligible. This regime is expected to be reached at sufficiently high Rayleigh numbers for a fluid of any given Prandtl number. In the high-Pr limit, Nu = F-1(k(1))(RePr1/3)-Pr-1/2 and, in the low-Pr limit, Nu tends to pi(-1/2RePr1/2)-Pr-1/2, where F-1(k(1)) has a weak dependence on the parameter k(1) in the eddy viscosity that measures velocity fluctuations. These theoretical results further reveal a close resemblance of the scaling dependencies of heat flux in steady forced convection and turbulent RayleighBenard convection and this finding solves a puzzle in our present understanding of heat transfer in turbulent Rayleigh-Benard convection.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Boundary layer structure in turbulent Rayleigh-Benard convection
    Shi, Nan
    Emran, Mohammad S.
    Schumacher, Joerg
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 706 : 5 - 33
  • [2] Boundary layer fluctuations in turbulent Rayleigh-Benard convection
    Wang, Yin
    Xu, Wei
    He, Xiaozhou
    Yik, Hiufai
    Wang, Xiaoping
    Schumacher, Jorg
    Tong, Penger
    [J]. JOURNAL OF FLUID MECHANICS, 2018, 840 : 408 - 431
  • [3] The evolution of the boundary layer in turbulent Rayleigh-Benard convection in air
    du Puits, R.
    Willert, C.
    [J]. PHYSICS OF FLUIDS, 2016, 28 (04)
  • [4] Thermal Boundary Layer Equation for Turbulent Rayleigh-Benard Convection
    Shishkina, Olga
    Horn, Susanne
    Wagner, Sebastian
    Ching, Emily S. C.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [5] Heat flux in Rayleigh-Benard convection
    Shibata, H
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 352 (2-4) : 335 - 346
  • [6] Local boundary layer scales in turbulent Rayleigh-Benard convection
    Scheel, Janet D.
    Schumacher, Joerg
    [J]. JOURNAL OF FLUID MECHANICS, 2014, 758 : 344 - 373
  • [7] Measurements of the local convective heat flux in turbulent Rayleigh-Benard convection
    Shang, XD
    Qiu, XL
    Tong, P
    Xia, KQ
    [J]. PHYSICAL REVIEW E, 2004, 70 (02):
  • [8] Spatial distribution of heat flux and fluctuations in turbulent Rayleigh-Benard convection
    Lakkaraju, Rajaram
    Stevens, Richard J. A. M.
    Verzicco, Roberto
    Grossmann, Siegfried
    Prosperetti, Andrea
    Sun, Chao
    Lohse, Detlef
    [J]. PHYSICAL REVIEW E, 2012, 86 (05):
  • [9] Connecting flow structures and heat flux in turbulent Rayleigh-Benard convection
    van der Poel, Erwin P.
    Stevens, Richard J. A. M.
    Lohse, Detlef
    [J]. PHYSICAL REVIEW E, 2011, 84 (04)
  • [10] Measurements of the instantaneous local heat flux in turbulent Rayleigh-Benard convection
    du Puits, Ronald
    Resagk, Christian
    Thess, Andre
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12