Acid-sensing ion channels in taste buds

被引:28
|
作者
Shimada, Shoichi
Ueda, Takashi
Ishida, Yusuke
Yamamoto, Takashi
Ugawa, Shinya
机构
[1] Nagoya City Univ, Dept Mol Morphol, Grad Sch Med Sci, Mizuho Ku, Nagoya, Aichi 4678601, Japan
[2] Osaka Univ, Grad Sch Human Sci, Dept Behav Physiol, Suita, Osaka, Japan
关键词
D O I
10.1679/aohc.69.227
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Taste receptor cells detect gustatory stimuli using a complex arrangement of ion channels, G protein-coupled receptors, and signaling cascades. Sour and salty tastes are detected by ion channels in the rat. Using a combination of homology screening and functional expression approaches, we screened a rat circumvallate papilla cDNA library and identified acid-sensing ion channel-2a (ASIC2a) and ASIC2b as candidates for the rat sour-sensing channels. In situ hybridization and reverse transcription-polymerase chain reaction experiments revealed that ASIC2a and ALSIC2b transcripts were localized in taste bud cells. Immunohistochemistry and immunoprecipitation also revealed that both subunits were expressed in a subset of taste cells and that some of the cells expressed ASIC2a/ASIC2b heteromeric assemblies. Electrophysiological studies demonstrated that stimulation of acetic acid produced larger ASIC2 currents than did hydrochloric acid at the same pH. ASIC2a/ASIC2b channels generated maximal inward currents at pH <= 2.0, which agrees well with the in vivo pH-sensitivity of rat taste cells. The amiloride-sensitivity of ASIC2a/ASIC2b heteromer lessened with decreasing pH and almost completely disappeared at pH 2.0. These data suggest that ASIC2a and ASIC2b may play roles in sour taste transduction.
引用
收藏
页码:227 / 231
页数:5
相关论文
共 50 条
  • [21] Acid-sensing ion channels in sensory perception
    Lingueglia, Eric
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (24) : 17325 - 17329
  • [22] Acid-Sensing Ion Channels in Postoperative Pain
    Deval, Emmanuel
    Noel, Jacques
    Gasull, Xavier
    Delaunay, Anne
    Alloui, Abdelkrim
    Friend, Valerie
    Eschalier, Alain
    Lazdunski, Michel
    Lingueglia, Eric
    JOURNAL OF NEUROSCIENCE, 2011, 31 (16): : 6059 - 6066
  • [23] Acid-Sensing Ion Channels Contribute to Neurotoxicity
    Xiang-Ping Chu
    Kenneth A. Grasing
    John Q. Wang
    Translational Stroke Research, 2014, 5 : 69 - 78
  • [24] Identification of acid-sensing ion channels in bone
    Jahr, H
    van Driel, M
    van Osch, GJVM
    Weinans, H
    van Leeuwen, JPTM
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 337 (01) : 349 - 354
  • [25] Acid-sensing ion channels in sensory signaling
    Caraftino, Marcelo D.
    Montalbetti, Nicolas
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2020, 318 (03) : F531 - F543
  • [26] Peptides inhibitors of acid-sensing ion channels
    Diochot, S.
    Salinas, M.
    Baron, A.
    Escoubas, P.
    Lazdunski, M.
    TOXICON, 2007, 49 (02) : 271 - 284
  • [27] Acid-sensing ion channels: trafficking and pathophysiology
    Zeng, Wei-Zheng
    Liu, Di-Shi
    Xu, Tian-Le
    CHANNELS, 2014, 8 (06) : 481 - 487
  • [28] Structure and activity of the acid-sensing ion channels
    Sherwood, Thomas W.
    Frey, Erin N.
    Askwith, Candice C.
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2012, 303 (07): : C699 - C710
  • [29] Gating mechanisms of acid-sensing ion channels
    Nate Yoder
    Craig Yoshioka
    Eric Gouaux
    Nature, 2018, 555 : 397 - 401
  • [30] Acid-sensing ion channels in pain and disease
    John A. Wemmie
    Rebecca J. Taugher
    Collin J. Kreple
    Nature Reviews Neuroscience, 2013, 14 : 461 - 471