Fast Depth Map Super-Resolution using Deep Neural Network

被引:27
|
作者
Korinevskaya, Alisa [1 ]
Makarov, Ilya [1 ]
机构
[1] Natl Res Univ Higher Sch Econ, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Depth Map Super Resolution; Depth Reconstruction; Semi-Dense Depth Map Interpolation; Deep Convolutional Neural Networks; Mixed Reality; Perceptual Loss; IMAGE SUPERRESOLUTION;
D O I
10.1109/ISMAR-Adjunct.2018.00047
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Depth map super-resolution is a challenging computer vision problem. In this paper, we present two deep convolutional neural networks solving the problem of single depth map super-resolution. Both networks learn residual decomposition and trained with specific perceptual loss improving sharpness and perceptive quality of the upsampled depth map. Several experiments on various depth super-resolution benchmark datasets show state-of-art performance in terms of RMSE, SSIM, and PSNR metrics while allowing us to process depth super-resolution in real time with over 25-30 frames per second rate.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 50 条
  • [21] Adaptive Aggregate Stereo Matching Network with Depth Map Super-Resolution
    Liu, Botao
    Chen, Kai
    Peng, Sheng-Lung
    Zhao, Ming
    [J]. SENSORS, 2022, 22 (12)
  • [22] Discrete Cosine Transform Network for Guided Depth Map Super-Resolution
    Zhao, Zixiang
    Zhang, Jiangshe
    Xu, Shuang
    Lin, Zudi
    Pfister, Hanspeter
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5687 - 5697
  • [23] Adaptive Aggregate Stereo Matching Network with Depth Map Super-Resolution
    School of Computer Science, Yangtze University, Jingzhou
    434023, China
    不详
    10051, Taiwan
    [J]. Sensors, 12
  • [24] Perceptual Deep Depth Super-Resolution
    Voynov, Oleg
    Artemov, Alexey
    Egiazarian, Vage
    Notchenko, Alexander
    Bobrovskikh, Gleb
    Burnaev, Evgeny
    Zorin, Denis
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5652 - 5662
  • [25] Guided Depth Map Super-Resolution: A Survey
    Zhong, Zhiwei
    Liu, Xianming
    Jiang, Junjun
    Zhao, Debin
    Ji, Xiangyang
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (14S)
  • [26] BridgeNet: A Joint Learning Network of Depth Map Super-Resolution and Monocular Depth Estimation
    Tang, Qi
    Cong, Runmin
    Sheng, Ronghui
    He, Lingzhi
    Zhang, Dan
    Zhao, Yao
    Kwong, Sam
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2148 - 2157
  • [27] Pyramid-Structured Depth MAP Super-Resolution Based on Deep Dense-Residual Network
    Huang, Liqin
    Zhang, Jianjia
    Zuo, Yifan
    Wu, Qiang
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) : 1723 - 1727
  • [28] Fast, High-Quality Hierarchical Depth-Map Super-Resolution
    Qiao, Yiguo
    Jiao, Licheng
    Li, Wenbin
    Richardt, Christian
    Cosker, Darren
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4444 - 4453
  • [29] Super-resolution Reconstruction of Transitional Boundary Layers Using a Deep Neural Network
    Jeon, Youngmin
    You, Donghyun
    [J]. INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2023, 24 (04) : 1015 - 1031
  • [30] Deep Arbitrary-Scale Unfolding Network for Color-Guided Depth Map Super-Resolution
    Zhang, Jialong
    Zhao, Lijun
    Zhang, Jinjing
    Chen, Bintao
    Wang, Anhong
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT X, 2024, 14434 : 225 - 236