Biodegradable vesicular nanocarriers based on poly(ε-caprolactone)-block-poly(ethyl ethylene phosphate) for drug delivery

被引:50
|
作者
Wang, Feng [1 ,2 ]
Wang, Yu-Cai [3 ]
Yan, Li-Feng [4 ]
Wang, Jun [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230027, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Life Sci, Hefei 230027, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Polymer Sci & Engn, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Polyphosphoester; Polymer vesicle; Drug delivery; POLYMERSOME ENCAPSULATED HEMOGLOBIN; ALUMINUM ISOPROPOXIDE; POLYPEPTIDE VESICLES; EPSILON-CAPROLACTONE; COPOLYMER VESICLES; CONTROLLED-RELEASE; DIBLOCK COPOLYMER; OXYGEN CARRIER; LIPOSOMES; POLYMERIZATIONS;
D O I
10.1016/j.polymer.2009.09.007
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biodegradable polymer vesicle for drug delivery is reported. Poly(epsilon-caprolactone)-block-poly(ethyl ethylene phosphate) with well-defined structure (PCL150-b-PEEP30) has been prepared by ring-opening polymerization. It forms vesicles in aqueous solution using the thin-film hydration method and further exclusion of the as-formed vesicles results in vesicles at nano-size, demonstrated by confocal laser scanning microscope (CLSM) and transmission electron microscopy observations. Doxorubicin (DOX) has been loaded into the vesicles with a loading content of 4.38% using an acid gradient method. The release of DOX from the vesicles is accelerated in the presence of an enzyme phosphodiesterase I that is known to catalyze the degradation of polyphosphoester, achieving 83.8% release of total loaded DOX in 140 h. The DOX-loaded vesicles can be successfully internalized by A549 cells, and it results in enhanced inhibition to A549 cell proliferation, likely owning to the sustained intracellular release of DOX as observed by CLSM. With these properties, the vesicles based on the block copolymer of PCL and PEEP are attractive as drug carriers for pharmaceutical application. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5048 / 5054
页数:7
相关论文
共 50 条
  • [31] Preparation and drug loading of poly(ethylene glycol)-block-poly(ε-caprolactone) micelles through the evaporation of a cosolvent azeotrope
    Jette, KK
    Law, D
    Schmitt, EA
    Kwon, GS
    PHARMACEUTICAL RESEARCH, 2004, 21 (07) : 1184 - 1191
  • [32] On the mechanism of formation of vesicles from poly(ethylene oxide)-block-poly(caprolactone) copolymers
    Adams, Dave J.
    Kitchen, Craig
    Adams, Sarah
    Furzeland, Steve
    Atkins, Derek
    Schuetz, Peter
    Fernyhough, Christine M.
    Tzokova, Nadia
    Ryan, Anthony J.
    Butler, Michael F.
    SOFT MATTER, 2009, 5 (16) : 3086 - 3096
  • [33] Micellization of Poly(ethylene glycol)-block-Poly(caprolactone) in Compressible Near Critical Solvents
    Green, Jade
    Tyrrell, Zachary
    Radosz, Maciej
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39): : 16082 - 16086
  • [34] Synthesis and micellization of star-shaped poly(ethylene glycol)-block-poly(ε-caprolactone)
    Kim, KH
    Cui, GH
    Lim, HJ
    Huh, J
    Ahn, CH
    Jo, WH
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2004, 205 (12) : 1684 - 1692
  • [36] New self-nanoemulsifying drug delivery system (SNEDDS) with amphiphilic diblock copolymer methoxy poly (ethylene glycol)-block-poly (ε-caprolactone)
    Ren, Fuzheng
    Gao, Yuan
    Chen, Jialei
    Jing, Qiufang
    Yu, Yan
    PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY, 2013, 18 (03) : 745 - 751
  • [37] Poly(ethylene oxide)-block-poly(α-cinnamyl-ε-caprolactone-co-ε-caprolactone) diblock copolymer nanocarriers for enhanced solubilization of caffeic acid phenethyl ester
    Atanasova, Mariya-Desislava
    Grancharov, Georgy
    Petrov, Petar D.
    JOURNAL OF POLYMER SCIENCE, 2021, 59 (03) : 251 - 260
  • [38] Trilayered Single Crystals with Epitaxial Growth in Poly(ethylene oxide)-block-poly(ε-caprolactone)-block-poly(L-lactide) Thin Films
    Chiang, Yeo-Wan
    Hu, You-Yuan
    Li, Jhen-Ning
    Huang, Shih-Hung
    Kuo, Shiao-Wei
    MACROMOLECULES, 2015, 48 (23) : 8526 - 8533
  • [39] Polymorphism and crystallization in poly(vinylidene fluoride)/ poly(E-caprolactone)-block-poly(dimethylsiloxane)-block-poly(E-caprolactone) blends
    Seraji, Seyed Mohsen
    Guo, Qipeng
    POLYMER INTERNATIONAL, 2020, 69 (02) : 173 - 183
  • [40] In Vitro Biocompatibility Evaluation of Novel Urethane-Siloxane Co-Polymers Based on Poly(ε-Caprolactone)-block-Poly(Dimethylsiloxane)-block-Poly(ε-Caprolactone)
    Pergal, Marija V.
    Antic, Vesna V.
    Tovilovic, Gordana
    Nestorov, Jelena
    Vasiljevic-Radovic, Dana
    Djonlagic, Jasna
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2012, 23 (13) : 1629 - 1657