Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma

被引:16
|
作者
Li, Chao [1 ,2 ,3 ]
Wang, Shuo [3 ,4 ]
Serra, Angela [5 ,6 ,7 ]
Torheim, Turid [8 ,9 ]
Yan, Jiun-Lin [1 ,10 ,11 ]
Boonzaier, Natalie R. [1 ,12 ]
Huang, Yuan [3 ]
Matys, Tomasz [4 ]
McLean, Mary A. [4 ,8 ]
Markowetz, Florian [8 ,9 ]
Price, Stephen J. [1 ,13 ]
机构
[1] Univ Cambridge, Dept Clin Neurosci, Div Neurosurg, Cambridge Brain Tumour Imaging Lab, Box 167 Cambridge Biomed Campus, Cambridge CB2 0QQ, England
[2] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Dept Neurosurg, Shanghai Peoples Hosp 1,Sch Med, Shanghai, Peoples R China
[3] Univ Cambridge, Ctr Math Imaging Healthcare, Dept Pure Math & Math Stat, Cambridge, England
[4] Univ Cambridge, Dept Radiol, Cambridge, England
[5] Tampere Univ, Fac Med & Hlth Technol, Tampere, Finland
[6] Inst Biosci & Med Technol BioMediTech, Tampere, Finland
[7] Univ Salerno, DISA MIS, NeuRoNe Lab, Fisciano, SA, Italy
[8] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, England
[9] CRUK&EPSRC Canc Imaging Ctr Cambridge & Mancheste, Cambridge, England
[10] Chang Gung Mem Hosp, Dept Neurosurg, Keelung, Taiwan
[11] Chang Gung Univ, Coll Med, Taoyuan, Taiwan
[12] UCL, Dev Imaging & Biophys Sect, Great Ormond St Inst Child Hlth, London, England
[13] Univ Cambridge, Wolfson Brain Imaging Ctr, Dept Clin Neurosci, Cambridge, England
基金
美国国家卫生研究院; 英国工程与自然科学研究理事会;
关键词
Glioblastoma; Magnetic resonance imaging; Machine learning; Survival analysis; Prognosis; GLIOMAS RESPONSE ASSESSMENT; HIGH-GRADE GLIOMAS; PROGNOSTIC VALUE; FLAIR VOLUME; BRAIN-TUMORS; DIFFUSION; PERFUSION; SURVIVAL;
D O I
10.1007/s00330-018-5984-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Integrating multiple imaging modalities is crucial for MRI data interpretation. The purpose of this study is to determine whether a previously proposed multi-view approach can effectively integrate the histogram features from multi-parametric MRI and whether the selected features can offer incremental prognostic values over clinical variables. Methods Eighty newly-diagnosed glioblastoma patients underwent surgery and chemoradiotherapy. Histogram features of diffusion and perfusion imaging were extracted from contrast-enhancing (CE) and non-enhancing (NE) regions independently. An unsupervised patient clustering was performed by the multi-view approach. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the relevance of patient clustering to survival. The metabolic signatures of patient clusters were compared using multi-voxel spectroscopy analysis. The prognostic values of histogram features were evaluated by survival and ROC curve analyses. Results Two patient clusters were generated, consisting of 53 and 27 patients respectively. Cluster 2 demonstrated better overall survival (OS) (p = 0.007) and progression-free survival (PFS) (p < 0.001) than Cluster 1. Cluster 2 displayed lower N-acetylaspartate/creatine ratio in NE region (p = 0.040). A higher mean value of anisotropic diffusion in NE region was associated with worse OS (hazard ratio [HR] = 1.40, p = 0.020) and PFS (HR = 1.36, p = 0.031). The seven features selected by this approach showed significantly incremental value in predicting 12-month OS (p = 0.020) and PFS (p = 0.022). Conclusions The multi-view clustering method can provide an effective integration of multi-parametric MRI. The histogram features selected may be used as potential prognostic markers.
引用
收藏
页码:4718 / 4729
页数:12
相关论文
共 50 条
  • [31] Multi-parametric MRI imaging correlates with clinically meaningful surrogates of disease activity in autoimmune hepatitis
    Arndtz, Katherine
    Hodson, James
    Eddowes, Peter J.
    Kelly, Matthew D.
    Green, Dan
    Banerjee, Rajarshi
    Neubauer, Stefan
    Hirschfield, Gideon M.
    HEPATOLOGY, 2017, 66 : 188A - 188A
  • [32] Evaluating potential of multi-parametric MRI using co-registered histology: Application to a mouse model of glioblastoma
    Al-Mubarak, H.
    Vallatos, A.
    Gallagher, L.
    Birch, J.
    Chalmers, A. J.
    Holmes, W. M.
    MAGNETIC RESONANCE IMAGING, 2022, 85 : 121 - 127
  • [33] MULTI-PARAMETRIC MRI AND SPECT ASSESSMENT OF TREATMENT DOSE AND EFFICACY IN RESPECT-GBM FOR RECURRENT GLIOBLASTOMA (RGBM)
    Huang, Shiliang
    Brenner, Andrew
    Bao, Ande
    Michalek, Joel
    Moore, Melissa
    Hedrick, Marc
    LaFrance, Norman
    NEURO-ONCOLOGY, 2023, 25
  • [34] The role of multi-parametric MRI in loco-regional staging of men diagnosed with early prostate cancer
    Appayya, Mrishta Brizmohun
    Johnston, Edward William
    Punwani, Shonit
    CURRENT OPINION IN UROLOGY, 2015, 25 (06) : 510 - 517
  • [35] Accuracy of multi-parametric MRI for detection of significant prostate cancer at radical prostatectomy: analysis of 123 cases in an Australian regional centre
    Kam, J.
    Yuminaga, Y.
    Kim, R.
    Aluwihare, K.
    Khoury, S.
    Macneil, F.
    Ouyang, R.
    Ruthven, S.
    Louie-Johnsun, M.
    BJU INTERNATIONAL, 2017, 119 : 105 - 106
  • [36] MULTI-PARAMETRIC MRI-BASED MACHINE LEARNING ANALYSIS FOR PREDICTION OF NEOPLASTIC INFILTRATION AND RECURRENCE IN PATIENTS WITH GLIOBLASTOMA: UPDATES FROM THE MULTI-INSTITUTIONAL RESPOND CONSORTIUM
    Akbari, Hamed
    Mohan, Suyash
    Garcia, Jose
    Kazerooni, Anahita Fathi
    Sako, Chiharu
    Bakas, Spyridon
    Bilello, Michel
    Bagley, Stephen
    Baid, Ujjwal
    Brem, Steven
    Lustig, Robert
    Nasrallah, MacLean
    O'Rourke, Donald
    Barnholtz-Sloan, Jill
    Badve, Chaitra
    Sloan, Andrew
    Jain, Rajan
    Lee, Matthew
    Chakravarti, Arnab
    Palmer, Joshua
    Taylor, William
    Cepeda, Santiago
    Dicker, Adam
    Flanders, Adam
    Shi, Wenyin
    Shukla, Gaurav
    Calabrese, Evan
    Rudie, Jeffrey
    Villanueva-Meyer, Javier
    LaMontagne, Pamela
    Marcus, Daniel
    Balana, Carmen
    Capellades, Jaume
    Puig, Josep
    Murat, A. K.
    Colen, Rivka
    Ahn, Sung Soo
    Chang, Jong Hee
    Choi, Yoon Seong
    Lee, Seung-Koo
    Griffith, Brent
    Poisson, Laila
    Rogers, Lisa
    Booth, Thomas
    Mahajan, Abhishek
    Wiestler, Benedikt
    Davatzikos, Christos
    NEURO-ONCOLOGY, 2022, 24 : 179 - 180
  • [37] Incorporating Endorectal MR Elastography Into Multi-Parametric MRI for Prostate Cancer Imaging: Initial Feasibility in Volunteers
    Arani, Arvin
    Da Rosa, Michael
    Ramsay, Elizabeth
    Plewes, Don B.
    Haider, Masoom A.
    Chopra, Rajiv
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 38 (05) : 1251 - 1260
  • [38] Development of SPR Imaging-Impedance Sensor for Multi-Parametric Living Cell Analysis
    Yanase, Yuhki
    Yoshizaki, Kyohei
    Kimura, Kaiken
    Kawaguchi, Tomoko
    Hide, Michihiro
    Uno, Shigeyasu
    SENSORS, 2019, 19 (09)
  • [39] Identifying Multiple Invasive Intratumor Habitats in Glioblastoma Using Multi-Parametric Magnetic Resonance Imaging and Copula Transform
    Li, C.
    Wang, S.
    Sun, C.
    Schonlieb, C. B.
    Price, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : S80 - S81
  • [40] Personalized precision radiotherapy by integration of multi-parametric functional and biological imaging in prostate cancer: A feasibility study
    Thorwarth, Daniela
    Notohamiprodjo, Mike
    Zips, Daniel
    Mueller, Arndt-Christan
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2017, 27 (01): : 21 - 30