Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma

被引:16
|
作者
Li, Chao [1 ,2 ,3 ]
Wang, Shuo [3 ,4 ]
Serra, Angela [5 ,6 ,7 ]
Torheim, Turid [8 ,9 ]
Yan, Jiun-Lin [1 ,10 ,11 ]
Boonzaier, Natalie R. [1 ,12 ]
Huang, Yuan [3 ]
Matys, Tomasz [4 ]
McLean, Mary A. [4 ,8 ]
Markowetz, Florian [8 ,9 ]
Price, Stephen J. [1 ,13 ]
机构
[1] Univ Cambridge, Dept Clin Neurosci, Div Neurosurg, Cambridge Brain Tumour Imaging Lab, Box 167 Cambridge Biomed Campus, Cambridge CB2 0QQ, England
[2] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Dept Neurosurg, Shanghai Peoples Hosp 1,Sch Med, Shanghai, Peoples R China
[3] Univ Cambridge, Ctr Math Imaging Healthcare, Dept Pure Math & Math Stat, Cambridge, England
[4] Univ Cambridge, Dept Radiol, Cambridge, England
[5] Tampere Univ, Fac Med & Hlth Technol, Tampere, Finland
[6] Inst Biosci & Med Technol BioMediTech, Tampere, Finland
[7] Univ Salerno, DISA MIS, NeuRoNe Lab, Fisciano, SA, Italy
[8] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, England
[9] CRUK&EPSRC Canc Imaging Ctr Cambridge & Mancheste, Cambridge, England
[10] Chang Gung Mem Hosp, Dept Neurosurg, Keelung, Taiwan
[11] Chang Gung Univ, Coll Med, Taoyuan, Taiwan
[12] UCL, Dev Imaging & Biophys Sect, Great Ormond St Inst Child Hlth, London, England
[13] Univ Cambridge, Wolfson Brain Imaging Ctr, Dept Clin Neurosci, Cambridge, England
基金
美国国家卫生研究院; 英国工程与自然科学研究理事会;
关键词
Glioblastoma; Magnetic resonance imaging; Machine learning; Survival analysis; Prognosis; GLIOMAS RESPONSE ASSESSMENT; HIGH-GRADE GLIOMAS; PROGNOSTIC VALUE; FLAIR VOLUME; BRAIN-TUMORS; DIFFUSION; PERFUSION; SURVIVAL;
D O I
10.1007/s00330-018-5984-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Integrating multiple imaging modalities is crucial for MRI data interpretation. The purpose of this study is to determine whether a previously proposed multi-view approach can effectively integrate the histogram features from multi-parametric MRI and whether the selected features can offer incremental prognostic values over clinical variables. Methods Eighty newly-diagnosed glioblastoma patients underwent surgery and chemoradiotherapy. Histogram features of diffusion and perfusion imaging were extracted from contrast-enhancing (CE) and non-enhancing (NE) regions independently. An unsupervised patient clustering was performed by the multi-view approach. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the relevance of patient clustering to survival. The metabolic signatures of patient clusters were compared using multi-voxel spectroscopy analysis. The prognostic values of histogram features were evaluated by survival and ROC curve analyses. Results Two patient clusters were generated, consisting of 53 and 27 patients respectively. Cluster 2 demonstrated better overall survival (OS) (p = 0.007) and progression-free survival (PFS) (p < 0.001) than Cluster 1. Cluster 2 displayed lower N-acetylaspartate/creatine ratio in NE region (p = 0.040). A higher mean value of anisotropic diffusion in NE region was associated with worse OS (hazard ratio [HR] = 1.40, p = 0.020) and PFS (HR = 1.36, p = 0.031). The seven features selected by this approach showed significantly incremental value in predicting 12-month OS (p = 0.020) and PFS (p = 0.022). Conclusions The multi-view clustering method can provide an effective integration of multi-parametric MRI. The histogram features selected may be used as potential prognostic markers.
引用
收藏
页码:4718 / 4729
页数:12
相关论文
共 50 条
  • [1] Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma
    Chao Li
    Shuo Wang
    Angela Serra
    Turid Torheim
    Jiun-Lin Yan
    Natalie R. Boonzaier
    Yuan Huang
    Tomasz Matys
    Mary A. McLean
    Florian Markowetz
    Stephen J. Price
    European Radiology, 2019, 29 : 4718 - 4729
  • [2] Combined PET/MRI: Multi-modality Multi-parametric Imaging Is Here
    Bailey, D. L.
    Pichler, B. J.
    Gueckel, B.
    Barthel, H.
    Beer, A. J.
    Bremerich, J.
    Czernin, J.
    Drzezga, A.
    Franzius, C.
    Goh, V.
    Hartenbach, M.
    Iida, H.
    Kjaer, A.
    la Fougere, C.
    Ladefoged, C. N.
    Law, I.
    Nikolaou, K.
    Quick, H. H.
    Sabri, O.
    Schaefer, J.
    Schaefers, M.
    Wehrl, H. F.
    Beyer, T.
    MOLECULAR IMAGING AND BIOLOGY, 2015, 17 (05) : 595 - 608
  • [3] Multi-parametric MRI maps regional heterogeneity of high grade glioma phenotypes
    Flick, Matthew
    Weiskittel, Taylor
    Meng-Lin, Kevin
    D'Angelo, Fulvio
    Caruso, Francesca
    Ensign, Shannon
    Blomquist, Mylan
    Wang, Luija
    Sereduk, Christopher
    De Leon, Gustavo
    Nespodzany, Ashley
    Urcuyo, Javier
    Gonzalez, Ashlynn
    Curtin, Lee
    Singleton, Kyle
    Anil, Aliya
    Simmineh, Natenael
    Lewis, Erika
    Noviello, Teresa
    Patel, Reyna
    Wang, Panwen
    Wang, Junwen
    Eschbacher, Jennifer
    Hawkins-Daarud, Andrea
    Jackson, Pamela
    Smith, Kris
    Nakaji, Peter
    Bendok, Bernard
    Zimmerman, Richard
    Krishna, Chandan
    Patra, Devi
    Patel, Naresh
    Lyons, Mark
    Neal, Matthew
    Donev, Kliment
    Mrugala, Maciej
    Porter, Alyx
    Beeman, Scott
    Zhou, Yuxiang
    Baxter, Leslie
    Plaisier, Christopher
    Li, Jing
    Li, Hu
    Lasorella, Anna
    Quarles, Chad
    Swanson, Kristin
    Ceccarelli, Michele
    Iavarone, Antonio
    Tran, Nhan
    Hu, Leland
    CANCER RESEARCH, 2023, 83 (07)
  • [4] A generalized parametric response mapping method for analysis of multi-parametric imaging: A feasibility study with application to glioblastoma
    Lausch, Anthony
    Yeung, Timothy Pok-Chi
    Chen, Jeff
    Law, Elton
    Wang, Yong
    Urbini, Benedetta
    Donelli, Filippo
    Manco, Luigi
    Fainardi, Enrico
    Lee, Ting-Yim
    Wong, Eugene
    MEDICAL PHYSICS, 2017, 44 (11) : 6074 - 6084
  • [5] Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma
    Hu, Leland S.
    Ning, Shuluo
    Eschbacher, Jennifer M.
    Gaw, Nathan
    Dueck, Amylou C.
    Smith, Kris A.
    Nakaji, Peter
    Plasencia, Jonathan
    Ranjbar, Sara
    Price, Stephen J.
    Nhan Tran
    Loftus, Joseph
    Jenkins, Robert
    O'Neill, Brian P.
    Elmquist, William
    Baxter, Leslie C.
    Gao, Fei
    Frakes, David
    Karis, John P.
    Zwart, Christine
    Swanson, Kristin R.
    Sarkaria, Jann
    Wu, Teresa
    Mitchell, J. Ross
    Li, Jing
    PLOS ONE, 2015, 10 (11):
  • [6] Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma
    Lundemann, Michael
    af Rosenschold, Per Munck
    Muhic, Aida
    Larsen, Vibeke A.
    Poulsen, Hans S.
    Engelholm, Svend-Aage
    Andersen, Flemming L.
    Kjaer, Andreas
    Larsson, Henrik B. W.
    Law, Ian
    Hansen, Adam E.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (03) : 603 - 613
  • [7] Prediction of Glioblastoma Multiform Response to Bevacizumab Treatment Using Multi-Parametric MRI
    Najafi, Mohammad
    Soltanian-Zadeh, Hamid
    Jafari-Khouzani, Kourosh
    Scarpace, Lisa
    Mikkelsen, Tom
    PLOS ONE, 2012, 7 (01):
  • [8] Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma
    Michael Lundemann
    Per Munck af Rosenschöld
    Aida Muhic
    Vibeke A. Larsen
    Hans S. Poulsen
    Svend-Aage Engelholm
    Flemming L. Andersen
    Andreas Kjær
    Henrik B. W. Larsson
    Ian Law
    Adam E. Hansen
    European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46 : 603 - 613
  • [9] Treatment-wise Glioblastoma Survival Inference with Multi-parametric Preoperative MRI
    Liu, Xiaofeng
    Shusharina, Nadya
    Shih, Helen A.
    Kuo, C. -C. Jay
    El Fakhri, Georges
    Woo, Jonghye
    COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024, 2024, 12927
  • [10] Multi-parametric imaging of cell heterogeneity in apoptosis analysis
    Vorobjev, Ivan A.
    Barteneva, Natasha S.
    METHODS, 2017, 112 : 105 - 123