Machine learning polymer models of three-dimensional chromatin organization in human lymphoblastoid cells

被引:7
|
作者
Al Bkhetan, Ziad [1 ,2 ]
Kadlof, Michal [1 ,4 ]
Kraft, Agnieszka [1 ,3 ]
Plewczynski, Dariusz [1 ,3 ]
机构
[1] Univ Warsaw, Ctr New Technol, Banacha 2c, PL-02097 Warsaw, Poland
[2] Univ Warsaw, Dept Biol, Warsaw, Poland
[3] Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland
[4] Univ Warsaw, Fac Phys, Warsaw, Poland
关键词
Deep learning; Machine learning; 3D genome structure; Epigenomics; Transcription factors; Biophysical modeling; DISCOVERY; ELEMENTS; GENOME; MAP;
D O I
10.1016/j.ymeth.2019.03.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present machine learning models of human genome three-dimensional structure that combine one dimensional (linear) sequence specificity, epigenomic information, and transcription factor binding profiles, with the polymer-based biophysical simulations in order to explain the extensive long-range chromatin looping observed in ChIA-PET experiments for lymphoblastoid cells. Random Forest, Gradient Boosting Machine (GBM), and Deep Learning models were constructed and evaluated, when predicting high-resolution interactions within Topologically Associating Domains (TADS). The predicted interactions are consistent with the experimental long-read ChIA-PET interactions mediated by CTCF and RNAPOL2 for GM12878 cell line. The contribution of sequence information and chromatin state defined by epigenomic features to the prediction task is analyzed and reported, when using them separately and combined. Furthermore, we design three-dimensional models of chromatin contact domains (CCDs) using real (ChIA-PET) and predicted looping interactions. Initial results show a similarity between both types of 3D computational models (constructed from experimental or predicted interactions). This observation confirms the association between genome sequence, epigenomic and transcription factor profiles, and three-dimensional interactions.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 50 条
  • [41] CTCF chromatin residence time controls three-dimensional genome organization, gene expression and DNA methylation in pluripotent cells
    Soochit, Widia
    Sleutels, Frank
    Stik, Gregoire
    Bartkuhn, Marek
    Basu, Sreya
    Hernandez, Silvia C.
    Merzouk, Sarra
    Vidal, Enrique
    Boers, Ruben
    Boers, Joachim
    van der Reijden, Michael
    Geverts, Bart
    van Cappellen, Wiggert A.
    van den Hout, Mirjam
    Ozgur, Zeliha
    van IJcken, Wilfred F. J.
    Gribnau, Joost
    Renkawitz, Rainer
    Graf, Thomas
    Houtsmuller, Adriaan
    Grosveld, Frank
    Stadhouders, Ralph
    Galjart, Niels
    NATURE CELL BIOLOGY, 2021, 23 (08) : 881 - +
  • [42] CTCF chromatin residence time controls three-dimensional genome organization, gene expression and DNA methylation in pluripotent cells
    Widia Soochit
    Frank Sleutels
    Gregoire Stik
    Marek Bartkuhn
    Sreya Basu
    Silvia C. Hernandez
    Sarra Merzouk
    Enrique Vidal
    Ruben Boers
    Joachim Boers
    Michael van der Reijden
    Bart Geverts
    Wiggert A. van Cappellen
    Mirjam van den Hout
    Zeliha Ozgur
    Wilfred F. J. van IJcken
    Joost Gribnau
    Rainer Renkawitz
    Thomas Graf
    Adriaan Houtsmuller
    Frank Grosveld
    Ralph Stadhouders
    Niels Galjart
    Nature Cell Biology, 2021, 23 : 881 - 893
  • [43] Three-Dimensional Probabilistic Hydrofacies Modeling Using Machine Learning
    Kawo, Nafyad Serre
    Korus, Jesse
    Kishawi, Yaser
    Haacker, Erin Marie King
    Mittelstet, Aaron R.
    WATER RESOURCES RESEARCH, 2024, 60 (07)
  • [44] Structured Light Three-Dimensional Measurement Based on Machine Learning
    Zhong, Chuqian
    Gao, Zhan
    Wang, Xu
    Shao, Shuangyun
    Gao, Chenjia
    SENSORS, 2019, 19 (14)
  • [45] Three-dimensional, multimodal synchrotron data for machine learning applications
    Calum Green
    Sharif Ahmed
    Shashidhara Marathe
    Liam Perera
    Alberto Leonardi
    Killian Gmyrek
    Daniele Dini
    James Le Houx
    Scientific Data, 12 (1)
  • [46] Image-derived, Three-dimensional Generative Models of Cellular Organization
    Peng, Tao
    Murphy, Robert F.
    CYTOMETRY PART A, 2011, 79A (05) : 383 - 391
  • [47] The expression of the human Coxsackie and Adenovirus receptor (CAR) depends on the three-dimensional organization of epithelial cells
    Anders, M
    Hansen, RK
    McCormick, F
    Bissell, MJ
    Korn, WM
    CANCER GENE THERAPY, 2000, 7 (12) : S12 - S12
  • [48] Three-dimensional microengineered models of human cardiac diseases
    Veldhuizen, Jaimeson
    Migrino, Raymond Q.
    Nikkhah, Mehdi
    JOURNAL OF BIOLOGICAL ENGINEERING, 2019, 13 (1)
  • [49] Human Three-Dimensional Models for Studying Skin Pathogens
    Boero, Elena
    Mnich, Malgorzata Ewa
    Manetti, Andrea Guido Oreste
    Soldaini, Elisabetta
    Grimaldi, Luca
    Bagnoli, Fabio
    THREE DIMENSIONAL HUMAN ORGANOTYPIC MODELS FOR BIOMEDICAL RESEARCH, 2021, 430 : 3 - 27
  • [50] VASCULARIZED THREE-DIMENSIONAL MODELS OF HUMAN SKIN FIBROSIS
    Matei, A. E.
    Chen, C. W.
    Kiesewetter, L.
    Gyoerfi, A. H.
    Li, Y. N.
    Trinh-Minh, T.
    Van Kuppevelt, T.
    Hansmann, J.
    Juengel, A.
    Schett, G.
    Groeber-Becker, F.
    Distler, J.
    ANNALS OF THE RHEUMATIC DISEASES, 2020, 79 : 121 - 122