Contextual and Multi-Scale Feature Fusion Network for Traffic Sign Detection

被引:0
|
作者
Zhang, Wei [1 ,2 ,3 ,4 ]
Wang, Qiang [5 ,6 ,7 ]
Fan, Huijie [5 ,6 ,7 ]
Tang, Yandong [5 ,6 ,7 ]
机构
[1] Chinese Acad Sci, State Key Lab Robot, Shenyang Inst Automat, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot, Shenyang 100016, Peoples R China
[3] Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 100016, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, SIA, State Key Lab Robot, Shenyang 110016, Peoples R China
[6] Chinese Acad Sci, Inst Robot, Shenyang 110016, Peoples R China
[7] Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic sign detection; contextual attention; multi-scale feature; convolutional neural network;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The traffic sign detection, as an important part of the automatic driving system, requires high accuracy. In this paper, we proposed an end-to-end deep learning network, named the Contextual and Multi-Scale Feature Fusion Network, for traffic sign detection. The model consists of two sub-networks: the Weighted Multi-scale Feature Learning network (W-net) and the Contextual-Attention Learning network (C-net). The W-net extracts multi-scale features and calculates the weights of each feature map layer to detect traffic signs under different scales. The C-net learns the contextual attention mask of interference items and concatenates it with the multi-scale feature, which reduce the detection false efficiently. Compared with several state-of-the-art traffic sign detection methods, our proposed model outperforms others on extensive quantitative and qualitative experiments.
引用
收藏
页码:13 / 17
页数:5
相关论文
共 50 条
  • [41] Multi-scale feature fusion network for pixel-level pavement distress detection
    Zhong, Jingtao
    Zhu, Junqing
    Huyan, Ju
    Ma, Tao
    Zhang, Weiguang
    AUTOMATION IN CONSTRUCTION, 2022, 141
  • [42] Multi-scale feature fusion network for pixel-level pavement distress detection
    Zhong, Jingtao
    Zhu, Junqing
    Huyan, Ju
    Ma, Tao
    Zhang, Weiguang
    Automation in Construction, 2022, 141
  • [43] Fire Detection Method Based on Deep Residual Network and Multi-Scale Feature Fusion
    Xiao, Zehao
    Dong, Enzeng
    Du, Shengzhi
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4810 - 4815
  • [44] MSFF: A Multi-Scale Feature Fusion Network for Surface Defect Detection of Aluminum Profiles
    Sun, Lianshan
    Wei, Jingxue
    Du, Hanchao
    Zhang, Yongbin
    He, Lifeng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (09) : 1652 - 1655
  • [45] Multi-scale feature fusion network for pixel-level pavement distress detection
    Zhong, Jingtao
    Zhu, Junqing
    Huyan, Ju
    Ma, Tao
    Zhang, Weiguang
    AUTOMATION IN CONSTRUCTION, 2022, 141
  • [46] Multi-scale feature progressive fusion network for remote sensing image change detection
    Di Lu
    Shuli Cheng
    Liejun Wang
    Shiji Song
    Scientific Reports, 12
  • [47] An encrypted traffic identification method based on multi-scale feature fusion
    Zhu, Peng
    Wang, Gang
    He, Jingheng
    Dong, Yueli
    Chang, Yu
    ARRAY, 2024, 21
  • [48] Siamese Network Tracker Based on Multi-Scale Feature Fusion
    Zhao, Jiaxu
    Niu, Dapeng
    SYSTEMS, 2023, 11 (08):
  • [49] Double multi-scale feature fusion network for crowd counting
    Liu, Qian
    Fang, Jiongtao
    Zhong, Yixiong
    Wang, Cunbao
    Qi, Youwei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (34) : 81831 - 81855
  • [50] MFANet: Multi-scale feature fusion network with attention mechanism
    Wang, Gaihua
    Gan, Xin
    Cao, Qingcheng
    Zhai, Qianyu
    VISUAL COMPUTER, 2023, 39 (07): : 2969 - 2980