Asymptotics of the hitting probability for a small sphere and a two dimensional Brownian motion with discontinuous anisotropic drift

被引:1
|
作者
Grandits, Peter [1 ]
机构
[1] TD Wien, Inst Stochast & Wirtschaftsmath, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
Discontinuous drift; hitting probabilities; optimal control problem; two-dimensional Brownian motion;
D O I
10.3150/20-BEJ1257
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide an approximation of the hitting probability for a small sphere for the following two dimensional process: In x-direction it is just a Brownian motion with positive constant drift, whereas in y-direction the process Y-t is a Brownian motion with drift given by a negative constant times the sign of Y-t. This process can be seen as the solution of a certain stochastic optimal control problem. It turns out that the approximating function can be expressed as the sum of a term involving a modified Bessel function and an ordinary Lebesgue integral.
引用
收藏
页码:853 / 865
页数:13
相关论文
共 50 条
  • [1] SMALL TIME ASYMPTOTICS FOR BROWNIAN MOTION WITH SINGULAR DRIFT
    Chen, Zhen-Qing
    Fang, Shizan
    Zhang, Tusheng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3567 - 3578
  • [2] Probability of Brownian motion hitting an obstacle
    Knessl, C
    Keller, JB
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (02) : 729 - 745
  • [3] The joint distribution of the hitting time and place to a sphere or spherical shell for Brownian motion with drift
    Yin, CC
    STATISTICS & PROBABILITY LETTERS, 1999, 42 (04) : 367 - 373
  • [4] Probability of entering an orthant by correlated fractional Brownian motion with drift: exact asymptotics
    Debicki, Krzysztof
    Ji, Lanpeng
    Novikov, Svyatoslav
    EXTREMES, 2024, 27 (04) : 613 - 641
  • [5] HITTING LINES WITH TWO-DIMENSIONAL BROWNIAN-MOTION
    IYENGAR, S
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (06) : 983 - 989
  • [6] Two-dimensional Brownian motion of anisotropic dimers
    Mayer, Daniel B.
    Sarmiento-Gomez, Erick
    Escobedo-Sanchez, Manuel A.
    Segovia-Gutierrez, Juan Pablo
    Kurzthaler, Christina
    Egelhaaf, Stefan U.
    Franosch, Thomas
    PHYSICAL REVIEW E, 2021, 104 (01)
  • [8] Extremal behavior of hitting a cone by correlated Brownian motion with drift
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Ji, Lanpeng
    Rolski, Tomasz
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (12) : 4171 - 4206
  • [9] HITTING TIME AND PLACE TO A SPHERE OR SPHERICAL SHELL FOR BROWNIAN MOTION
    YIN CHUANCUN
    WU RONG(Department of Mathematics
    ChineseAnnalsofMathematics, 1999, (02) : 205 - 214
  • [10] Hitting time and place to a sphere or spherical shell for Brownian motion
    Yin, CC
    Wu, R
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1999, 20 (02) : 205 - 214