k-Fractional Estimates of Hermite-Hadamard Type Inequalities Involving k-Appell's Hypergeometric Functions and Applications

被引:0
|
作者
Awan, Muhammad Uzair [1 ]
Noor, Muhammad Aslam [2 ]
Mihai, Marcela, V [3 ]
Noor, Khalida Inayat [2 ]
机构
[1] Govt Coll Univ, Dept Math, Faisalabad 38000, Punjab, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Islamabad 44000, Pakistan
[3] Romanian Math Soc, Dept Sci Method Sess, Branch Bucharest, Acad St 14, RO-010014 Bucharest, Romania
关键词
convex; s-convex; k-fractional; bounds; Appell's hypergeometric functions;
D O I
10.3390/fractalfract3030038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main objective of this paper is to obtain certain new k-fractional estimates of Hermite-Hadamard type inequalities via s-convex functions of Breckner type essentially involving k-Appell's hypergeometric functions. We also present applications of the obtained results by considering particular examples.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [21] Fractional Hermite-Hadamard Type Inequalities for Subadditive Functions
    Ali, Muhammad Aamir
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    FILOMAT, 2022, 36 (11) : 3715 - 3729
  • [22] Hermite-Hadamard Inequalities Involving The Gauss Hypergeometric Function
    Sarikaya, Mehmet Zeki
    7TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2018), 2018, 2037
  • [23] New fractional estimates of Hermite-Hadamard inequalities and applications to means
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Awan, Muhammad Uzair
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (01): : 3 - 15
  • [24] Refinements of Hermite-Hadamard Type Inequalities Involving Fractional Integrals
    Wang, JinRong
    Li, Xuezhu
    Zhu, Chun
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (04) : 655 - 666
  • [25] Some δ-Tempered Fractional Hermite-Hadamard Inequalities Involving Harmonically Convex Functions and Applications
    Akhtar, Nousheen
    Awan, Muhammad Uzair
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [26] HERMITE-HADAMARD TYPE INEQUALITIES FOR PREINVEX FUNCTIONS WITH APPLICATIONS
    Singh, Shiwani
    Mishra, Shashi kant
    Singh, Vandana
    Kumar, Pankaj
    Budak, Huseyin
    KOREAN JOURNAL OF MATHEMATICS, 2025, 33 (01): : 71 - 74
  • [27] k-fractional integral inequalities of Hadamard type for exponentially (s, m)-convex functions
    Rehman, Atiq Ur
    Farid, Ghulam
    Bibi, Sidra
    Jung, Chahn Yong
    Kang, Shin Min
    AIMS MATHEMATICS, 2021, 6 (01): : 882 - 892
  • [28] Some inequalities involving Hadamard-type k-fractional integral operators
    Agarwal, Praveen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (11) : 3882 - 3891
  • [29] Hermite-Hadamard and Hermite-Hadamard-Fejer Type Inequalities Involving Fractional Integral Operators
    Set, Erhan
    Akdemir, Ahmet Ocak
    Alan, Emrullah Aykan
    FILOMAT, 2019, 33 (08) : 2367 - 2380
  • [30] Hermite-Hadamard Type Fractional Integral Inequalities for Preinvex Functions
    LIAN TIE-YAN
    TANG WEI
    ZHOU RUI
    Ji You-qing
    Communications in Mathematical Research, 2018, 34 (04) : 351 - 362