Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications

被引:31
|
作者
Tan, Y. C. [1 ]
Tou, Z. Q. [2 ]
Chow, K. K. [1 ]
Chan, C. C. [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637457, Singapore
来源
OPTICS EXPRESS | 2015年 / 23卷 / 24期
关键词
SURFACE-PLASMON RESONANCE; STRAIN SENSOR; INTERFEROMETER; REFRACTOMETER; EXCITATION;
D O I
10.1364/OE.23.031286
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a pilot demonstration of an optical fiber based refractive index (RI) sensor involving the deposition of graphene onto the surface of a segment of a photonic crystal fiber (PCF) in a fiber-based Mach-Zehnder Interferometer (MZI). The fabrication process is relatively simple and only involves the fusion splicing of a PCF between two single mode fibers. The deposition process relies only on the cold transfer of graphene onto the PCF segment, without the need for further physical or chemical treatment. The graphene overlay modified the sensing scheme of the MZI RI sensor, allowing the sensor to overcome limitations to its detectable RI range due to free spectral range issues. This modification also allows for continuous measurements to be obtained without the need for reference values for the range of RIs studied and brings to light the potential for simultaneous dual parameter sensing. The sensor was able to achieve a RI sensitivity of 9.4 dB/RIU for the RIs of 1.33-1.38 and a sensitivity of 17.5 dB/RIU for the RIs of 1.38-1.43. It also displayed good repeatability and the results obtained were consistent with the modeling. (C) 2015 Optical Society of America
引用
收藏
页码:31286 / 31294
页数:9
相关论文
共 50 条
  • [21] Sensitivity improvement of photonic crystal fiber for refractive index sensing
    Singh, Shivam Kumar
    Srivastava, Anshika
    Maurya, Aditya
    Verma, Alka
    JOURNAL OF OPTICS-INDIA, 2025, 54 (01): : 84 - 89
  • [22] Refractive Index Gas Sensing in a Hollow Photonic Crystal Cavity
    Jagerska, J.
    Le Thomas, N.
    Zhang, H.
    Diao, Z.
    Houdre, R.
    2010 12TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,
  • [23] A High Sensitivity Surface Plasmon Resonance Biosensor Based on Photonic Crystal Fibers for Refractive Index Sensing
    Wang, Haoran
    Chen, Sijie
    Dai, Weiyu
    Cai, Xun
    Fu, Hongyan
    2022 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2022), 2022, : 873 - 880
  • [24] Refractive index sensing performance analysis of photonic crystal containing graphene based on optical Tamm state
    Chen, Ying
    Dong, Jing
    Liu, Teng
    Zhu, Qiguang
    Chen, Weidong
    MODERN PHYSICS LETTERS B, 2016, 30 (04):
  • [25] High refractive index chalcogenide glass for photonic crystal applications
    Paivasaari, Kimmo
    Tikhomirov, Victor K.
    Turunen, Jari
    OPTICS EXPRESS, 2007, 15 (05) : 2336 - 2340
  • [26] High-resolution Refractive Index Sensing using Solid-core Photonic Crystal Fibers with High Index Infiltrations
    Yu, X.
    Shum, P.
    Ren, G. B.
    Zhang, Y. F.
    2008 34TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2008,
  • [27] Liquid Crystal Filled Photonic Crystal Fibers for Voltage Sensing Applications
    Mathews, Sunish
    Farrell, Gerald
    Semenova, Yuliya
    OPTICAL SENSING AND DETECTION, 2010, 7726
  • [28] Photonic Crystal Fiber based Modal Interferometer for Refractive Index Sensing
    Deng, Ming
    Sun, Xiaokang
    Huang, Wei
    Wei, Huifeng
    Li, Jiang
    23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, 2014, 9157
  • [29] Photonic crystal cavity on optical fiber facet for refractive index sensing
    Wang, Bowen
    Siahaan, Timothy
    Dundar, Mehmet A.
    Notzel, Richard
    van der Hoek, Marinus J.
    He, Sailing
    van der Heijden, Rob W.
    OPTICS LETTERS, 2012, 37 (05) : 833 - 835
  • [30] Refractive index sensing with an air-slot photonic crystal nanocavity
    Jagerska, Jana
    Zhang, Hua
    Diao, Zhaolu
    Le Thomas, Nicolas
    Houdre, Romuald
    OPTICS LETTERS, 2010, 35 (15) : 2523 - 2525