A remark on regularity criterion for the dissipative quasi-geostrophic equations

被引:20
|
作者
Dong, Bo-Qing [1 ]
Chen, Zhi-Min
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Univ Southampton, Sch Engn Sci Ship Sci, Southampton SO17 1BJ, Hants, England
关键词
quasi-geostrophic equations; regularity criterion; logarithmic Sobolev inequalities;
D O I
10.1016/j.jmaa.2006.07.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns with a regularity criterion of solutions to the 2D dissipative quasi-geostrophic equations. Based on a logarithmic Sobolev inequality in Besov spaces, the absence of singularities of theta in [0, T] is derived for theta a solution on the interval [0, T) satisfying the condition del(perpendicular to)theta epsilon epsilon L-r (0, T; B-p(0), infinity) for 2/p + alpha/r = alpha, 4/alpha < p <infinity. This is an extension of earlier regularity results in the Serrin's type space L-r (0, T; L-p). (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1212 / 1217
页数:6
相关论文
共 50 条