Synergistic use of piezoelectric and shape memory alloy elements for vibration-based energy harvesting

被引:25
|
作者
Adeodato, Arthur [1 ]
Duarte, Brenno T. [1 ]
Monteiro, Luciana Loureiro S. [1 ]
Pacheco, Pedro Manuel C. L. [1 ]
Savi, Marcelo A. [2 ]
机构
[1] Ctr Fed Educ Tecnol Celso Suckow da Fonseca, CEFET RJ Dept Mech Engn, BR-20271110 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Ctr Nonlinear Mech, COPPE Dept Mech Engn, POB 68-503, BR-21941972 Rio De Janeiro, Brazil
关键词
Energy harvesting; Piezoelectric materials; Shape memory alloys; Experimental analysis; Numerical analysis;
D O I
10.1016/j.ijmecsci.2020.106206
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The efforts for clean and renewable energy have been encouraging a growing interest for vibration-based energy harvesting devices. Piezoelectric materials are remarkable elements to promote electro-mechanical coupling allowing the conversion of the mechanical vibration into electrical power through piezoelectric direct effect. Nevertheless, this promising application is associated with the key challenge to enhance and expand the energy harvesting capacity. In this regard, this work proposes the synergistic use of smart materials, combining piezoelectric and shape memory alloy (SMA) elements. Experimental and numerical analyses are performed showing the enhanced capabilities of the system due to the adaptability provided by shape memory alloys. A piezoelectric beam excited by an electrodynamics shaker is connected with a shape memory alloy element that allows to exploit its remarkable characteristics in order to change system properties with temperature variations through Joule's effect. Thermomechanical tests are performed for SMA characterization. Afterward, nonlinear dynamics of the energy harvesting system is investigated exploiting the SMA adaptive behavior. Results show that the synergistic use of smart materials is able to increase the device bandwidth, improving the system performance for energy harvesting purposes.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Vibration-based energy harvesting with essential nonlinearities
    Quinn, D. Dane
    Vakakis, Alexander F.
    Bergman, Lawrence A.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCE AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A-C, 2008, : 779 - 786
  • [32] New insights into vibration-based energy harvesting
    Zhang, H.
    Ma, T.
    Xu, N. S.
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2015, 2015, 9435
  • [33] Investigation of Geometries of Bistable Piezoelectric-Laminate Plates for Vibration-based Energy Harvesting
    Betts, David N.
    Bowen, Christopher R.
    Inman, Daniel J.
    Weaver, Paul M.
    Kim, H. Alicia
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2014, 2014, 9057
  • [34] Electret transducer for vibration-based energy harvesting
    Hillenbrand, J.
    Pondrom, P.
    Sessler, G. M.
    APPLIED PHYSICS LETTERS, 2015, 106 (18)
  • [35] Airfoil-based piezoelectric energy harvesting by exploiting the pseudoelastic hysteresis of shape memory alloy springs
    de Sousa, Vagner Candido
    De Marqui Junior, Carlos
    SMART MATERIALS AND STRUCTURES, 2015, 24 (12)
  • [36] Characterization and Optimization of Piezoelectric Bimorph Cantilever Structure for Ambient Vibration-Based Energy Harvesting Application
    Asthana, Prateek
    Khanna, Gargi
    INTEGRATED FERROELECTRICS, 2020, 211 (01) : 45 - 59
  • [37] Stacked and folded piezoelectrets for vibration-based energy harvesting
    Sessler, G. M.
    Pondrom, P.
    Zhang, X.
    PHASE TRANSITIONS, 2016, 89 (7-8) : 667 - 677
  • [38] A review of vibration-based MEMS piezoelectric energy harvesters
    Saadon, Salem
    Sidek, Othman
    ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) : 500 - 504
  • [39] A vibration-based electromagnetic and piezoelectric hybrid energy harvester
    Khan, Farid Ullah
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (08) : 6894 - 6916
  • [40] A review of piezoelectric energy harvesting based on vibration
    Heung Soo Kim
    Joo-Hyong Kim
    Jaehwan Kim
    International Journal of Precision Engineering and Manufacturing, 2011, 12 : 1129 - 1141