Using CFW-Net Deep Learning Models for X-Ray Images to Detect COVID-19 Patients

被引:28
|
作者
Wang, Wei [1 ]
Liu, Hao [1 ]
Li, Ji [1 ]
Nie, Hongshan [2 ,3 ]
Wang, Xin [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha 410076, Peoples R China
[3] Hunan BJI TECH Co Ltd, Changsha 410000, Peoples R China
关键词
COVID-19; Deep learning; CFW-Net; Convolutional neural network; Chest X ray images; DIAGNOSIS;
D O I
10.2991/ijcis.d.201123.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
COVID-19 is an infectious disease caused by severe acute respiratory syndrome (SARS)-CoV-2 virus. So far, more than 20 million people have been infected. With the rapid spread of COVID-19 in the world, most countries are facing the shortage of medical resources. As the most extensive detection technology at present, reverse transcription polymerase chain reaction (RT-PCR) is expensive, long-time (time consuming) and low sensitivity. These problems prompted us to propose a deep learning model to help radiologists and clinicians detect COVID-19 cases through chest X-ray. According to the characteristics of chest X-ray image, we designed the channel feature weight extraction (CFWE) module, and proposed a new convolutional neural network, CFW-Net, based on the CFWE module. Meanwhile, in order to improve recognition efficiency, the network adopts three classifiers for classification: one fully connected (FC) layers, global average pooling fully-connected (GFC) module and point convolution global average pooling (CGAP) module. The latter two methods have fewer parameters, less calculation and better real-time performance. In this paper, we have evaluated CFW-Net based on two open-source datasets. The experimental results show that the overall accuracy of our model CFW-Net56-GFC is 94.35% and the accuracy and sensitivity of COVID-19 are 100%. Compared with other methods, our method can detect COVID-19 disease more accurately. (C) 2021 The Authors. Published by Atlantis Press B.V.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 50 条
  • [31] COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images
    Akter, Shamima
    Shamrat, F. M. Javed Mehedi
    Chakraborty, Sovon
    Karim, Asif
    Azam, Sami
    BIOLOGY-BASEL, 2021, 10 (11):
  • [32] Diagnosis of COVID-19 from X-ray images using deep learning techniques
    Alghamdi, Maha Mesfer Meshref
    Dahab, Mohammed Yehia Hassan
    COGENT ENGINEERING, 2022, 9 (01):
  • [33] Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images
    Sharmila, V. J.
    Florinabel, Jemi D.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [34] Improved COVID-19 detection with chest x-ray images using deep learning
    Vedika Gupta
    Nikita Jain
    Jatin Sachdeva
    Mudit Gupta
    Senthilkumar Mohan
    Mohd Yazid Bajuri
    Ali Ahmadian
    Multimedia Tools and Applications, 2022, 81 : 37657 - 37680
  • [35] A Deep Learning Approach for Detecting Covid-19 Using the Chest X-Ray Images
    Sadeghi, Fatemeh
    Rostami, Omid
    Yi, Myung-Kyu
    Hwang, Seong Oun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 751 - 768
  • [36] Competitive Deep Learning Methods for COVID-19 Detection using X-ray Images
    Swapnarekha H.
    Behera H.S.
    Roy D.
    Das S.
    Nayak J.
    Journal of The Institution of Engineers (India): Series B, 2021, 102 (06) : 1177 - 1190
  • [37] A Deep Transfer Learning Approach to Diagnose Covid-19 using X-ray Images
    Progga, Nagifa Ilma
    Hossain, Mohammad Shahadat
    Andersson, Karl
    PROCEEDINGS OF 2020 6TH IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2020), 2020, : 189 - 194
  • [38] Utilizing Deep Learning Models and Transfer Learning for COVID-19 Detection from X-Ray Images
    Agrawal S.
    Honnakasturi V.
    Nara M.
    Patil N.
    SN Computer Science, 4 (4)
  • [39] Lightweight deep learning models for detecting COVID-19 from chest X-ray images
    Karakanis, Stefanos
    Leontidis, Georgios
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 130 (130)
  • [40] Detection of COVID-19 from X-Ray Images Using Machine Learning Models
    Sakib, Md. Masrul
    Karim, Meem
    Swachchha, Aftab Miraj
    Islam, Maheen
    Lecture Notes in Networks and Systems, 2023, 578 : 759 - 773