Virus-evolutionary particle swarm optimization algorithm

被引:0
|
作者
Gao, Fang [1 ]
Liu, Hongwei
Zhao, Qiang
Cui, Gang
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
[2] NE Forestry Univ, Sch Traff, Harbin 150040, Peoples R China
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an improved discrete particle swarm optimization algorithm based on virus theory of evolution. Virus-evolutionary discrete particle swarm optimization algorithm is proposed to simulate co-evolution of a particle swarm of candidate solutions and a virus swarm of substring representing schemata. In the co-evolutionary process, the virus propagates partial genetic information in the particle swarm by virus infection operators which enhances the horizontal search ability of particle swarm optimization algorithm. An example of partner selection in virtual enterprise is used to verify the proposed algorithm. Test results show that this algorithm outperforms the discrete PSO algorithm put forward by Kennedy and Eberhart.
引用
收藏
页码:156 / 165
页数:10
相关论文
共 50 条
  • [1] Virus-evolutionary particle swarm optimization algorithm for knapsack problem
    School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
    [J]. Harbin Gongye Daxue Xuebao, 2009, 6 (103-107):
  • [2] Evolutionary transition on virus-evolutionary genetic algorithm
    Kubota, N
    Fukuda, T
    Arakawa, T
    Shimojima, K
    [J]. PROCEEDINGS OF 1997 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '97), 1997, : 291 - 296
  • [3] Particle evolutionary swarm optimization algorithm (PESO)
    Zavala, AEM
    Aguirre, AH
    Diharce, ERV
    [J]. SIXTH MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE, PROCEEDINGS, 2005, : 282 - 289
  • [4] The role of virus infection in virus-evolutionary genetic algorithm
    Kubota, N
    Shimojima, K
    Fukuda, T
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 182 - 187
  • [5] Optimization of fused deposition modeling process using a virus-evolutionary genetic algorithm
    Fountas, Nikolaos A.
    Vaxevanidis, Nikolaos M.
    [J]. COMPUTERS IN INDUSTRY, 2021, 125
  • [6] Hybrid particle swarm - Evolutionary algorithm for search and optimization
    Grosan, C
    Abraham, A
    Han, SY
    Gelbukh, A
    [J]. MICAI 2005: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2005, 3789 : 623 - 632
  • [7] An evolutionary game based particle swarm optimization algorithm
    Liu, Wei-Bing
    Wang, Xian-Ha
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (01) : 30 - 35
  • [8] An Evolutionary Particle Swarm Optimization Algorithm for Data Clustering
    Alam, Shafiq
    Dobbie, Gillian
    Riddle, Patricia
    [J]. 2008 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2008, : 124 - 129
  • [9] A New Hybrid Particle Swarm Optimization and Evolutionary Algorithm
    Dziwinski, Piotr
    Bartczuk, Lukasz
    Goetzen, Piotr
    [J]. ARTIFICIAL INTELLIGENCEAND SOFT COMPUTING, PT I, 2019, 11508 : 432 - 444
  • [10] Improved Particle Swarm Optimization using Evolutionary Algorithm
    Chansamorn, Sukanya
    Somgiat, Wichaya
    [J]. 2022 19TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2022), 2022,