A New Hybrid Particle Swarm Optimization and Evolutionary Algorithm

被引:3
|
作者
Dziwinski, Piotr [1 ]
Bartczuk, Lukasz [1 ]
Goetzen, Piotr [2 ,3 ]
机构
[1] Czestochowa Tech Univ, Inst Computat Intelligence, Czestochowa, Poland
[2] Univ Social Sci, Informat Technol Inst, PL-90113 Lodz, Poland
[3] Clark Univ, Worcester, MA 01610 USA
关键词
Hybrid algorithm; Particle swarm optimization; Evolutionary algorithm; GENETIC ALGORITHM; SYSTEMS;
D O I
10.1007/978-3-030-20912-4_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimization (PSO) has proved fast convergence in many optimization problems but still has the main drawback falling in a local minimum. This paper presents a new Hybrid Particle Swarm Optimization and Evolutionary algorithm (HPSO-E) to solve this problem by introducing a new population of children particles obtained by applying a mutation and crossover operators taken from the evolutionary algorithm. In this way, we connect the best properties of the algorithms: fast convergence of the PSO and ability to global search introduced by the evolutionary algorithm. The novel hybrid algorithm shows sufficient convergence for unimodal benchmark function and excellent convergence for selected hard multimodal benchmark functions.
引用
收藏
页码:432 / 444
页数:13
相关论文
共 50 条
  • [1] Hybrid particle swarm - Evolutionary algorithm for search and optimization
    Grosan, C
    Abraham, A
    Han, SY
    Gelbukh, A
    [J]. MICAI 2005: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2005, 3789 : 623 - 632
  • [2] A new hybrid algorithm of particle swarm optimization
    Yang, Guangyou
    Chen, Dingfang
    Zhou, Guozhu
    [J]. COMPUTATIONAL INTELLIGENCE AND BIOINFORMATICS, PT 3, PROCEEDINGS, 2006, 4115 : 50 - 60
  • [3] Particle swarm optimization with genetic recombination: a hybrid evolutionary algorithm
    Duong, Sam Chau
    Kinjo, Hiroshi
    Uezato, Eiho
    Yamamoto, Tetsuhiko
    [J]. ARTIFICIAL LIFE AND ROBOTICS, 2010, 15 (04) : 444 - 449
  • [4] A New Class of Hybrid Particle Swarm Optimization Algorithm
    Da-Qing Guo
    [J]. Journal of Electronic Science and Technology, 2007, (02) : 149 - 152
  • [5] Simulation of a new hybrid particle swarm optimization algorithm
    Noel, MM
    Jannett, TC
    [J]. PROCEEDINGS OF THE THIRTY-SIXTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2004, : 150 - 153
  • [6] Simulation of a new hybrid particle swarm optimization algorithm
    Luo, Ping
    Ni, Peihong
    Yao, Lihai
    Ho, S. L.
    Ni, GuangZheng
    Xia, Haixia
    [J]. INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2007, 25 (1-4) : 705 - 710
  • [7] Genetical SWARM optimization: A new hybrid evolutionary algorithm for electromagnetics
    Grimaldi, EA
    Grimaccia, F
    Mussetta, M
    Zich, RE
    [J]. 10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, CONFERENCE PROCEEDINGS, 2004, : 458 - 460
  • [8] On a hybrid particle swarm optimization algorithm
    Singh, Sharandeep
    Singh, Narinder
    Singh, S. B.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2016, 3 (12): : 96 - 105
  • [9] A Hybrid Particle Swarm Optimization Algorithm
    Qi Changxing
    Bi Yiming
    Han Huihua
    Li Yong
    [J]. PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 2187 - 2190
  • [10] Particle evolutionary swarm optimization algorithm (PESO)
    Zavala, AEM
    Aguirre, AH
    Diharce, ERV
    [J]. SIXTH MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE, PROCEEDINGS, 2005, : 282 - 289