Semi-hierarchical naive Bayes classifier

被引:0
|
作者
Njah, Hasna [1 ]
Jamoussi, Salma [1 ]
Mahdi, Walid [2 ]
机构
[1] Univ Sfax, Multimedia InfoRmat Syst & Adv Comp Lab MIRACL, Sfax, Tunisia
[2] Taif Univ, Coll Comp & Informat Technol, Al Huwaya, Taif, Saudi Arabia
关键词
Bayesian classifier; latent variable; high dimensional data;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The classification of high dimensional data is an arduous task especially with the emergence of high quality data acquisition techniques. This problem is accentuated when the whole set of features is needed to learn a classifier such as the case of genomic data. The Bayesian approach is suitable for these applications because it represents graphically and statistically the dependencies between the features. Unfortunately, learning a Bayesian classifier using a high number of features does not ensure a tradeoff between the dimensions' reduction, the semantic of the model and the predictive performance. We propose a new semi-hierarchical naive Bayes that uses the latent variables for abstracting the features of a given dataset in order to reduce the dimensionality. These variables are suitable for finding graphically and semantically analyzable models. We combined them with the observed variables in a tree-augmented naive Bayes structure in order to improve the prediction accuracy. An excessive experimental study showed that our method is suitable for high dimensional data and overcomes the existing methods.
引用
收藏
页码:1772 / 1779
页数:8
相关论文
共 50 条
  • [21] Exact Learning Augmented Naive Bayes Classifier
    Sugahara, Shouta
    Ueno, Maomi
    ENTROPY, 2021, 23 (12)
  • [22] Texture Classification using Naive Bayes Classifier
    Mansour, Ayman M.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (01): : 112 - 120
  • [23] Incremental discretization for Naive-Bayes classifier
    Lu, Jingli
    Yang, Ying
    Webb, Geoffrey I.
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 223 - 238
  • [24] Applying Naive Bayes Classifier to Document Clustering
    Ji, Jie
    Zhao, Qiangfu
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2010, 14 (06) : 624 - 630
  • [25] An aggregated fuzzy naive bayes data classifier
    Tütüncü, G. Yazgi
    Kayaalp, Necla
    Journal of Computational and Applied Mathematics, 2015, 286 : 17 - 27
  • [26] An Extension of Tree Augmented Naive Bayes Classifier
    Wang, Zhongfeng
    Tian, Jianwei
    2011 SECOND ETP/IITA CONFERENCE ON TELECOMMUNICATION AND INFORMATION (TEIN 2011), VOL 1, 2011, : 243 - 246
  • [27] Understanding of the Naive Bayes Classifier in Spam Filtering
    Wei, Qijia
    6TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, MANUFACTURING, MODELING AND SIMULATION (CDMMS 2018), 2018, 1967
  • [28] Boosting the Tree Augmented Naive Bayes classifier
    Downs, T
    Tang, A
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2004, PROCEEDINGS, 2004, 3177 : 708 - 713
  • [29] Threshold-based Naive Bayes classifier
    Romano, Maurizio
    Contu, Giulia
    Mola, Francesco
    Conversano, Claudio
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (02) : 325 - 361
  • [30] Regularization and averaging of the selective Naive Bayes classifier
    Boulle, Marc
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1680 - 1688