Global regularity for degenerate/singular parabolic equations involving measure data

被引:6
|
作者
Byun, Sun-Sig [1 ,2 ]
Park, Jung-Tae [3 ]
Shin, Pilsoo [4 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Korea Inst Adv Study, Seoul 02455, South Korea
[4] Kyonggi Univ, Dept Math, Suwon 16227, South Korea
关键词
REIFENBERG FLAT DOMAINS; ELLIPTIC-EQUATIONS; ZYGMUND THEORY; BLOOD-FLOW; SYSTEMS; PROPERTY; BOUNDARY;
D O I
10.1007/s00526-020-01906-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider degenerate and singular parabolic equations with p-Laplacian structure in bounded nonsmooth domains when the right-hand side is a signed Radon measure with finite total mass. We develop a new tool that allows global regularity estimates for the spatial gradient of solutions to such parabolic measure data problems, by introducing the (intrinsic) fractional maximal function of a given measure.
引用
收藏
页数:32
相关论文
共 50 条