Continuous variable multimode quantum states via symmetric group velocity matching

被引:10
|
作者
Roman-Rodriguez, V [1 ]
Brecht, B. [2 ]
Srinivasan, K. [3 ]
Silberhorn, C. [2 ]
Treps, N. [3 ]
Diamanti, E. [1 ]
Parigi, V [3 ]
机构
[1] Sorbonne Univ, CNRS, LIP6, 4 Pl Jussieu, F-75005 Paris, France
[2] Paderborn Univ, Inst Photon Quantum Syst PhoQS, Integrated Quantum Opt, Warburger Str 100, D-33098 Paderborn, Germany
[3] ENS PSL Res Univ, Sorbonne Univ, CNRS, Coll France,Lab Kastler Brossel, 4 Pl Jussieu, F-75252 Paris, France
来源
NEW JOURNAL OF PHYSICS | 2021年 / 23卷 / 04期
基金
欧洲研究理事会;
关键词
continuous variables; quantum networks; non linear waveguides; non-linear optics; multimode quantum states;
D O I
10.1088/1367-2630/abef96
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Configurable and scalable continuous variable (CV) quantum networks for measurement-based quantum information protocols or multipartite quantum communication schemes can be obtained via parametric down conversion (PDC) in non-linear waveguides. In this work, we exploit symmetric group velocity matching (SGVM) to engineer the properties of the squeezed modes of the PDC. We identify type II PDC in a single waveguide as the best suited process, since multiple modes with non-negligible amount of squeezing can be obtained. We explore, for the first time, the waveguide dimensions, usually only set to ensure single-mode guiding, as an additional design parameter ensuring indistinguishability of the signal and idler fields. We investigate here potassium titanyl phosphate (KTP), which offers SGVM at telecommunications wavelengths, but our approach can be applied to any non-linear material and pump wavelength. This work paves the way toward the engineering of future large-scale quantum networks in the CV regime.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Continuous-variable graph states for quantum metrology
    Wang, Yunkai
    Fang, Kejie
    PHYSICAL REVIEW A, 2020, 102 (05)
  • [32] Non-Gaussian ancilla states for continuous variable quantum computation via Gaussian maps
    Ghose, Shohini
    Sanders, Barry C.
    JOURNAL OF MODERN OPTICS, 2007, 54 (06) : 855 - 869
  • [33] Entanglement purification of Gaussian continuous variable quantum states in quantum optics
    Duan, Lu Ming
    Giedke, G.
    Cirac, J.I.
    Zoller, P.
    Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series, 2000,
  • [34] Strenghtening Classical Symmetric Encryption with Continuous Variable Quantum Key Distribution
    Debuisschert, Thierry
    Fossier, Simon
    Tualle-Brouri, Rosa
    Grangier, Philippe
    Diamanti, Eleni
    Leverrier, Anthony
    Alleaume, Romain
    Pache, Philippe
    Painchault, Philippe
    Jouguet, Paul
    Kunz-Jacques, Sebastien
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [35] Implementing arbitrary multimode continuous-variable quantum gates with fixed non-Gaussian states and adaptive linear optics
    Hanamura, Fumiya
    Asavanant, Warit
    Nagayoshi, Hironari
    Sakaguchi, Atsushi
    Ide, Ryuhoh
    Fukui, Kosuke
    van Loock, Peter
    Furusawa, Akira
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [36] Continuous-variable neural network quantum states and the quantum rotor model
    James Stokes
    Saibal De
    Shravan Veerapaneni
    Giuseppe Carleo
    Quantum Machine Intelligence, 2023, 5
  • [37] Continuous-variable neural network quantum states and the quantum rotor model
    Stokes, James
    De, Saibal
    Veerapaneni, Shravan
    Carleo, Giuseppe
    QUANTUM MACHINE INTELLIGENCE, 2023, 5 (01)
  • [38] Optical quantum computation with continuous-variable cluster states
    van Loock, Peter
    2007 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1-4, 2007, : 953 - 954
  • [39] Continuous-variable optimization with neural network quantum states
    Yabin Zhang
    David Gorsich
    Paramsothy Jayakumar
    Shravan Veerapaneni
    Quantum Machine Intelligence, 2022, 4
  • [40] Continuous-variable optimization with neural network quantum states
    Zhang, Yabin
    Gorsich, David
    Jayakumar, Paramsothy
    Veerapaneni, Shravan
    QUANTUM MACHINE INTELLIGENCE, 2022, 4 (01)