A Study of Multilayer Perceptron Networks Applied to Classification of Ceramic Insulators Using Ultrasound

被引:39
|
作者
Sopelsa Neto, Nemesio Fava [1 ]
Stefenon, Stefano Frizzo [2 ,3 ]
Meyer, Luiz Henrique [1 ]
Bruns, Rafael [1 ]
Nied, Ademir [2 ]
Seman, Laio Oriel [4 ]
Gonzalez, Gabriel Villarrubia [5 ]
Leithardt, Valderi Reis Quietinho [6 ]
Yow, Kin-Choong [3 ]
机构
[1] Reg Univ Blumenau FURB, Elect Engn Grad Program, R Sao Paulo 3250, BR-89030000 Blumenau, Brazil
[2] Santa Catarina State Univ UDESC, Elect Engn Grad Program, R Paulo Malschitzki 200, BR-89219710 Joinville, Brazil
[3] Univ Regina, Fac Engn & Appl Sci, Wascana Pkwy 3737, Regina, SK S4S 0A2, Canada
[4] Univ Vale Itajai UNIVALI, Grad Program Appl Comp Sci, R Uruguai 458, BR-88302202 Itajai, SC, Brazil
[5] Univ Salamanca, Fac Sci, Expert Syst & Applicat Lab, Plaza Caidos S-N, Salamanca 37008, Spain
[6] Inst Politecn Portalegre, Res Ctr Endogenous Resources Valorizat, VALORIZA, P-7300555 Portalegre, Portugal
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 04期
关键词
artificial neural network; multilayer perceptron; ultrasound; ceramic insulators;
D O I
10.3390/app11041592
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interruptions in the supply of electricity cause numerous losses to consumers, whether residential or industrial and may result in fines being imposed on the regulatory agency's concessionaire. In Brazil, the electrical transmission and distribution systems cover a large territorial area, and because they are usually outdoors, they are exposed to environmental variations. In this context, periodic inspections are carried out on the electrical networks, and ultrasound equipment is widely used, due to non-destructive analysis characteristics. Ultrasonic inspection allows the identification of defective insulators based on the signal interpreted by an operator. This task fundamentally depends on the operator's experience in this interpretation. In this way, it is intended to test machine learning applications to interpret ultrasound signals obtained from electrical grid insulators, distribution, class 25 kV. Currently, research in the area uses several models of artificial intelligence for various types of evaluation. This paper studies Multilayer Perceptron networks' application to the classification of the different conditions of ceramic insulators based on a restricted database of ultrasonic signals recorded in the laboratory.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Classification of fuels using multilayer perceptron neural networks
    Ozaki, Sergio T. R.
    Wiziack, Nadja K. L.
    Paterno, Leonardo G.
    Fonseca, Fernando J.
    [J]. OLFACTION AND ELECTRONIC NOSE, PROCEEDINGS, 2009, 1137 : 525 - 526
  • [2] Classification error of multilayer perceptron neural networks
    Feng, Lihua
    Hong, Weihu
    [J]. NEURAL COMPUTING & APPLICATIONS, 2009, 18 (04): : 377 - 380
  • [3] Multilayer perceptron applied to genotypes classification in diallel studies
    Inocente, Gabriela
    Garbuglio, Deoclecio Domingos
    Ruas, Paulo Mauricio
    [J]. SCIENTIA AGRICOLA, 2022, 79 (03):
  • [4] Classification error of multilayer perceptron neural networks
    Lihua Feng
    Weihu Hong
    [J]. Neural Computing and Applications, 2009, 18
  • [5] Lithofacies Classification Using the Multilayer Perceptron and the Self-organizing Neural Networks
    Ouadfeul, Sid-Ali
    Aliouane, Leila
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT V, 2012, 7667 : 737 - 744
  • [6] Classification of Characters Using Multilayer Perceptron and Simplified Fuzzy ARTMAP Neural Networks
    Wafi, N. M.
    Sabri, Naseer
    Yaakob, Shahrul Nizam
    Nasir, A. S. A.
    Nazren, A. R. A.
    Hisham, M. B.
    [J]. ADVANCED SCIENCE LETTERS, 2017, 23 (06) : 5151 - 5155
  • [7] USING MULTILAYER PERCEPTRON AND DEEP NEURAL NETWORKS FOR THE DIAGNOSIS OF BREAST CANCER CLASSIFICATION
    Igodan, C. Efosa
    Ukaoha, Kingsley C.
    [J]. 2019 IEEE AFRICON, 2019,
  • [8] Classification of LPI Radar Signals Using Multilayer Perceptron (MLP) Neural Networks
    Shyamsunder, Metuku
    Rao, Kakarla Subba
    [J]. ADVANCES IN SIGNAL PROCESSING AND COMMUNICATION ENGINEERING, ICASPACE 2021, 2022, 929 : 233 - 248
  • [9] Classification of MathML Expressions Using Multilayer Perceptron
    Nagao, Yuma
    Suzuki, Nobutaka
    [J]. PROCEEDINGS OF THE 2017 ACM SYMPOSIUM ON DOCUMENT ENGINEERING (DOCENG 17), 2017, : 133 - 136
  • [10] Human Activity Classification Using Multilayer Perceptron
    Majidzadeh Gorjani, Ojan
    Byrtus, Radek
    Dohnal, Jakub
    Bilik, Petr
    Koziorek, Jiri
    Martinek, Radek
    [J]. SENSORS, 2021, 21 (18)