Human Activity Classification Using Multilayer Perceptron

被引:6
|
作者
Majidzadeh Gorjani, Ojan [1 ]
Byrtus, Radek [1 ]
Dohnal, Jakub [1 ]
Bilik, Petr [1 ]
Koziorek, Jiri [1 ]
Martinek, Radek [1 ]
机构
[1] VSB Tech Univ Ostrava, Fac Elect Engn & Comp Sci, Dept Cybernet & Biomed Engn, Ostrava 70030, Czech Republic
关键词
human activity recognition; artificial neural network (ANN); intelligent buildings (IB); smart home (SH); HUMAN ACTIVITY RECOGNITION;
D O I
10.3390/s21186207
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The number of smart homes is rapidly increasing. Smart homes typically feature functions such as voice-activated functions, automation, monitoring, and tracking events. Besides comfort and convenience, the integration of smart home functionality with data processing methods can provide valuable information about the well-being of the smart home residence. This study is aimed at taking the data analysis within smart homes beyond occupancy monitoring and fall detection. This work uses a multilayer perceptron neural network to recognize multiple human activities from wrist- and ankle-worn devices. The developed models show very high recognition accuracy across all activity classes. The cross-validation results indicate accuracy levels above 98% across all models, and scoring evaluation methods only resulted in an average accuracy reduction of 10%.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Classification of MathML Expressions Using Multilayer Perceptron
    Nagao, Yuma
    Suzuki, Nobutaka
    [J]. PROCEEDINGS OF THE 2017 ACM SYMPOSIUM ON DOCUMENT ENGINEERING (DOCENG 17), 2017, : 133 - 136
  • [2] HUMAN-CHROMOSOME CLASSIFICATION USING MULTILAYER PERCEPTRON NEURAL-NETWORK
    LERNER, B
    GUTERMAN, H
    DINSTEIN, I
    ROMEM, Y
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1995, 6 (03) : 359 - 370
  • [3] Efficient FPGA Implementation of Multilayer Perceptron for Real-Time Human Activity Classification
    Gaikwad, Nikhil B.
    Tiwari, Varun
    Keskar, Avinash
    Shivaprakash, N. C.
    [J]. IEEE ACCESS, 2019, 7 : 26696 - 26706
  • [4] On the classification of multispectral satellite images using the multilayer perceptron
    Venkatesh, YV
    Raja, SK
    [J]. PATTERN RECOGNITION, 2003, 36 (09) : 2161 - 2175
  • [5] Classification of fuels using multilayer perceptron neural networks
    Ozaki, Sergio T. R.
    Wiziack, Nadja K. L.
    Paterno, Leonardo G.
    Fonseca, Fernando J.
    [J]. OLFACTION AND ELECTRONIC NOSE, PROCEEDINGS, 2009, 1137 : 525 - 526
  • [6] CLASSIFICATION OF POLAR-THERMAL EIGENFACES USING MULTILAYER PERCEPTRON FOR HUMAN FACE RECOGNITION
    Bhowmik, Mrinal Kanti
    Bhattacharjee, Debotosh
    Nasipuri, Mita
    Basu, Dipak Kumar
    Kundu, Mahantapas
    [J]. IEEE REGION 10 COLLOQUIUM AND THIRD INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, VOLS 1 AND 2, 2008, : 544 - +
  • [7] Classification of COVID-19 Symptoms Using Multilayer Perceptron
    Azam, Nurulain Nusrah Mohd
    Ismail, Mohd Arfian
    Mohamad, Mohd Saberi
    Ibrahim, Ashraf Osman
    Jeba, Shermina
    [J]. Iraqi Journal for Computer Science and Mathematics, 2023, 4 (04): : 99 - 110
  • [8] Classification of storm events using a fuzzy encoded multilayer perceptron
    Pizzi, NJ
    [J]. IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 547 - 550
  • [9] Feature Extraction and Classification of EEG Signal Using Multilayer Perceptron
    Mouleeshuwarapprabu, R.
    Kasthuri, N.
    [J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (04) : 3171 - 3178
  • [10] Classification of glottic insufficiency and tension asymmetry using a multilayer perceptron
    Hoffman, Matthew R.
    Surender, Ketan
    Devine, Erin E.
    Jiang, Jack J.
    [J]. LARYNGOSCOPE, 2012, 122 (12): : 2773 - 2780