Every Banach space with a w*-separable dual has a 1+ε-equivalent norm with the ball covering property

被引:22
|
作者
Cheng LiXin [1 ]
Shi HuiHua [1 ]
Zhang Wen [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2009年 / 52卷 / 09期
基金
中国国家自然科学基金;
关键词
ball-covering property; renorming; Banach space; MAZUR INTERSECTION PROPERTY; COMPACT; PACKING; SETS;
D O I
10.1007/s11425-009-0175-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A normed space is said to have ball-covering property if its unit sphere can be contained in the union of countably many open balls off the origin. This paper shows that for every epsilon > 0 every Banach space with a w*-separable dual has a 1+epsilon-equivalent norm with the ball covering property.
引用
收藏
页码:1869 / +
页数:6
相关论文
共 20 条