The thermal stability of nanocrystalline Au-Cu alloys

被引:20
|
作者
Jankowski, Alan F. [1 ]
Saw, Cheng K. [1 ]
Hayes, Jeffrey P. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Chem & Mat Sci Mat Sci & Technol Div, Livermore, CA 94550 USA
关键词
gold-copper; nanocrystalline; grain growth; diffusivity; electrodeposition;
D O I
10.1016/j.tsf.2006.07.167
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Grain refinement to the nanocrystalline scale is known to enhance physical properties as strength and surface hardness. For the case of Au-Cu alloys, development of the pulsed electroplating has led to the functional control of nanocrystalline grain size in the as-deposited condition. The thermal aging of Au-Cu electrodeposits is now investigated to assess the stability of the nanocrystalline grain structure and the difference between two diffusion mechanisms. The mobility of grain boundaries, dominant at low temperatures, leads to coarsening of grain size, whereas at high temperature the process of bulk diffusion dominates. Although the kinetics of bulk diffusion are slow below 500 K at 10(-20) cm(2) s(-1), the kinetics of grain boundary diffusion are faster at 10(-16) cm(2) s(-1). The diffusivity values indicate that the grain boundaries of the as-deposited nanocrystalline Au-Cu are mobile and sensitive to low-temperature anneal treatments affecting the grain size, hence the strength of the material. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1152 / 1156
页数:5
相关论文
共 50 条
  • [31] NEW VIEWPOINT ON MECHANISM OF PREFERENTIAL SPUTTERING OF Au-Cu ALLOYS.
    Li Risheng
    1600, (23):
  • [32] QUANTITATIVE AUGER-ELECTRON SPECTROSCOPY ANALYSIS OF THE AU-CU ALLOYS
    LI, RS
    SUN, YZ
    SURFACE SCIENCE, 1987, 191 (03) : 339 - 352
  • [33] QUANTITATIVE SURFACE CHEMICAL-ANALYSIS OF AU-CU ALLOYS WITH XPS
    YOSHITAKE, M
    YOSHIHARA, K
    SURFACE AND INTERFACE ANALYSIS, 1991, 17 (10) : 711 - 718
  • [34] ANODIC-DISSOLUTION OF AU-CU ALLOYS IN ACIDIC CHLORIDE SOLUTIONS
    SYADULLAEV, AS
    MEDVEDEV, AJ
    MASLY, AI
    BECK, RU
    SIBIRSKII KHIMICHESKII ZHURNAL, 1992, (04): : 129 - 133
  • [35] QUANTITATIVE SURFACE CHEMICAL-ANALYSIS OF AU-CU ALLOYS WITH AES
    YOSHIHARA, K
    SHIMIZU, R
    HOMMA, T
    TOKUTAKA, H
    GOTO, K
    UEMURA, M
    FUJITA, D
    KUROKAWA, A
    ICHIMURA, S
    OSHIMA, C
    KURAHASHI, M
    KUDO, M
    HASHIGUCHI, Y
    FUKUDA, Y
    SUZUKI, T
    OHMURA, T
    SOEDA, F
    TANAKA, K
    TANAKA, A
    SEKINE, T
    SHIOKAWA, Y
    HAYASHI, T
    SURFACE AND INTERFACE ANALYSIS, 1988, 12 (1-12) : 125 - 130
  • [36] Au-Cu Phase Diagram
    Fedorov, P. P.
    Volkov, S. N.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2016, 61 (06) : 772 - 775
  • [37] Thermal and Radiation Stability in Nanocrystalline Cu
    Thomas, Marie
    Salvador, Heather
    Clark, Trevor
    Lang, Eric
    Hattar, Khalid
    Mathaudhu, Suveen
    NANOMATERIALS, 2023, 13 (07)
  • [38] Structural simulation of super-cooled liquid Au-Cu, Au-Ag alloys
    Wang, L
    Zhang, YN
    Yang, H
    Chen, Y
    PHYSICS LETTERS A, 2003, 317 (5-6) : 489 - 494
  • [39] STUDY ON THE PHASE DIAGRAMS FOR Ag-Au, Au-Cu BINARY ALLOYS AT HIGH TEMPERATURE
    郑伟涛
    张瑞林
    余瑞璜
    ChineseScienceBulletin, 1991, (01) : 75 - 79
  • [40] 1ST-PRINCIPLES CALCULATION OF HEATS OF FORMATION FOR AU-CU, AU-PD AND AU-AG ALLOYS WITH THERMAL VIBRATION EFFECTS
    MOHRI, T
    TAKIZAWA, S
    TERAKURA, K
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (10) : 1473 - 1480