Cross-media Relevance Computation for Multimedia Retrieval

被引:1
|
作者
Dong, Jianfeng [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
来源
PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17) | 2017年
关键词
Cross-media retrieval; Image retrieval by textual queries; Sentence retrieval by visual queries;
D O I
10.1145/3123266.3123963
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we summarize our works for cross-media retrieval where the queries and retrieval content are of different media types. We study cross-media retrieval in the context of two applications, i.e., image retrieval by textual queries, and sentence retrieval by visual queries, two popular applications in multimedia retrieval. For image retrieval by textual queries, we propose text2image which converts computing cross-media relevance between images and textual queries to comparing the visual similarity among images. We also propose cross-media relevance fusion, a conceptual framework that combines multiple cross-media relevance estimators. These two techniques have resulted in a winning entry in the Microsoft Image Retrieval Challenge at ACM MM 2015. For sentence retrieval by visual queries, we propose to compute cross-media relevance in a visual space exclusively. We contribute Word2VisualVec, a deep neural network architecture that learns to predict a visual feature representation from textual input. With proposed Word2VisualVec model, we won the Video to Text Description task at TRECVID 2016.
引用
收藏
页码:831 / 835
页数:5
相关论文
共 50 条
  • [31] Semantic Topic Multimodal Hashing for Cross-Media Retrieval
    Wang, Di
    Gao, Xinbo
    Wang, Xiumei
    He, Lihuo
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3890 - 3896
  • [32] Cross-media database retrieval system based on TOTEM
    Zeng, Cheng
    Zhou, Haiyang
    Yan, Bing
    WEB INFORMATION SYSTEMS - WISE 2006 WORKSHOPS, PROCEEDINGS, 2006, 4256 : 182 - 193
  • [33] Combining Global and Local Similarity for Cross-Media Retrieval
    Li, Zhixin
    Ling, Feng
    Zhang, Canlong
    Ma, Huifang
    IEEE ACCESS, 2020, 8 (08): : 21847 - 21856
  • [34] Temporal Cross-Media Retrieval with Soft-Smoothing
    Semedo, David
    Magalhaes, Joao
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 1038 - 1046
  • [35] Bagging-based cross-media retrieval algorithm
    Gongwen Xu
    Yu Zhang
    Mingshan Yin
    Wenzhong Hong
    Ran Zou
    Shanshan Wang
    Soft Computing, 2023, 27 : 2615 - 2623
  • [36] Learning a Limited Text Space for Cross-Media Retrieval
    Yu, Zheng
    Wang, Wenmin
    Fan, Mengdi
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, 2017, 10424 : 292 - 303
  • [37] Fashion recommendations through cross-media information retrieval
    Zhou, Wei
    Mok, P. Y.
    Zhou, Yanghong
    Zhou, Yangping
    Shen, Jialie
    Qu, Qiang
    Chau, K. P.
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 61 : 112 - 120
  • [38] Cross-media retrieval with collective deep semantic learning
    Zhang, Bin
    Zhu, Lei
    Sun, Jiande
    Zhang, Huaxiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (17) : 22247 - 22266
  • [39] Online latent semantic hashing for cross-media retrieval
    Yao, Tao
    Wang, Gang
    Yan, Lianshan
    Kong, Xiangwei
    Su, Qingtang
    Zhang, Caiming
    Tian, Qi
    PATTERN RECOGNITION, 2019, 89 : 1 - 11
  • [40] Semantic convex matrix factorisation for cross-media retrieval
    Fang, Yixian
    Ren, Yuwei
    Zhang, Huaxiang
    IET IMAGE PROCESSING, 2019, 13 (01) : 196 - 205