Cross-media Relevance Computation for Multimedia Retrieval

被引:1
|
作者
Dong, Jianfeng [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
关键词
Cross-media retrieval; Image retrieval by textual queries; Sentence retrieval by visual queries;
D O I
10.1145/3123266.3123963
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we summarize our works for cross-media retrieval where the queries and retrieval content are of different media types. We study cross-media retrieval in the context of two applications, i.e., image retrieval by textual queries, and sentence retrieval by visual queries, two popular applications in multimedia retrieval. For image retrieval by textual queries, we propose text2image which converts computing cross-media relevance between images and textual queries to comparing the visual similarity among images. We also propose cross-media relevance fusion, a conceptual framework that combines multiple cross-media relevance estimators. These two techniques have resulted in a winning entry in the Microsoft Image Retrieval Challenge at ACM MM 2015. For sentence retrieval by visual queries, we propose to compute cross-media relevance in a visual space exclusively. We contribute Word2VisualVec, a deep neural network architecture that learns to predict a visual feature representation from textual input. With proposed Word2VisualVec model, we won the Video to Text Description task at TRECVID 2016.
引用
收藏
页码:831 / 835
页数:5
相关论文
共 50 条
  • [1] Image Retrieval by Cross-Media Relevance Fusion
    Dong, Jianfeng
    Li, Xirong
    Liao, Shuai
    Xu, Jieping
    Xu, Duanqing
    Du, Xiaoyong
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 173 - 176
  • [2] Understanding multimedia document semantics for cross-media retrieval
    Wu, F
    Yang, Y
    Zhuang, YT
    Pan, YH
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2005, PT 1, 2005, 3767 : 993 - 1004
  • [3] Cross-media Retrieval by Learning Rich Semantic Embeddings of Multimedia
    Fan, Mengdi
    Wang, Wenmin
    Dong, Peilei
    Han, Liang
    Wang, Ronggang
    Li, Ge
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1698 - 1706
  • [4] Mining semantic correlation of heterogeneous multimedia data for cross-media retrieval
    Zhuang, Yue-Ting
    Yang, Yi
    Wu, Fei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2008, 10 (02) : 221 - 229
  • [5] Harmonizing hierarchical manifolds for multimedia document semantics understanding and cross-media retrieval
    Yang, Yi
    Zhuang, Yue-Ting
    Wu, Fei
    Pan, Yun-He
    IEEE TRANSACTIONS ON MULTIMEDIA, 2008, 10 (03) : 437 - 446
  • [6] Multimedia - Know the variables in a cross-media transfer
    Phillips, JB
    Hindawi, MA
    Phillips, A
    Bailey, RV
    POLLUTION ENGINEERING, 1999, 31 (12) : 37 - 38
  • [7] A cross-media adaptation strategy for multimedia presentations
    Boll, S
    Klas, W
    Wandel, J
    ACM MULTIMEDIA 99, PROCEEDINGS, 1999, : 37 - 46
  • [8] Efficient Manifold Ranking for Cross-media retrieval
    Ma, ShaoQin
    Zhang, Hong
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 335 - 340
  • [9] Learning semantic correlations for cross-media retrieval
    Wu, Fei
    Zhang, Hong
    Zhuang, Yueting
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1465 - +
  • [10] A Benchmark Dataset and Learning High-Level Semantic Embeddings of Multimedia for Cross-media Retrieval
    Rehman, Sadaqat Ur
    Tu, Shanshan
    Huang, Yongfeng
    Rehman, Obaid Ur
    IEEE ACCESS, 2018, 6 : 67176 - 67188