Continuous CO2 capture performance of K2CO3/Al2O3 sorbents in a novel two-stage integrated bubbling-transport fluidized reactor

被引:18
|
作者
Ma, Jiliang [1 ]
Zhong, Jian [2 ]
Bao, Xuebing [1 ]
Chen, Xiaoping [1 ]
Wu, Ye [3 ]
Cai, Tianyi [1 ]
Liu, Daoyin [1 ]
Liang, Cai [1 ]
机构
[1] Southeast Univ, Key Lab Energy Thermal Convers & Control, Minist Educ, Sch Energy & Environm, Nanjing 210096, Peoples R China
[2] Shanghai Municipal Engn Design Inst Grp Co Ltd, Shanghai 200092, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Energy & Power Engn, MIIT Key Lab Thermal Control Elect Equipment, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CO2; capture; K2CO3/Al2O3; Two-stage fluidized bed; Water vapor; Sorbent activation; CARBON-DIOXIDE CAPTURE; TEMPERATURE SWING ADSORPTION; FIRED POWER-PLANT; FLUE-GAS; BED SYSTEM; SOLID SORBENTS; COAL; REGENERATION; OPERATION; BEHAVIORS;
D O I
10.1016/j.cej.2020.126465
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Post-combustion CO2 capture with solid sorbents is a promising technology. The feature of temperature swing adsorption for such process requires sufficient gas-sorbent contact, sustained driving force for adsorption and adjustable sorbent circulation between reactors. This, however, is hard to fully realize by traditional single regime fluidized reactors. In view of this, we proposed a novel two-stage integrated bubbling-transport bed reactor and examined its CO2 capture performance using K2CO3/Al2O3 sorbents. The results show that the optimal adsorption temperature ranges from 60 degrees C to 100 degrees C, much wider than that of traditional reactors. The CO2 capture efficiency increases with both sorbent circulation rate and desorption temperature. Better CO2 capture performance was observed when using air instead of CO2 as the desorption gas. Nevertheless, the difference is negligible as the desorption temperature exceeds 200 degrees C. Stage I is the region where CO2 adsorption mainly takes place, owing to the over-adsorption of water vapor. This limits the CO2 capture performance of the entire system. To this regard, water vapor step-feeding was carried out, acting as an in-situ activation of sorbents. It enhances the maximum CO2 capture efficiency from 87% to 96%, meanwhile showing a strong anti-interference ability for water vapor fluctuation even at a fixed total water vapor. The 24 h continuous test verifies the superiority of the present system as the CO2 capture efficiency maintains around 93% and the desorption CO2 purity keeps above 98%.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Gas-Particle Flows in a Two-Stage Integrated Bubbling-Transport Fluidized Bed for CO2Capture
    Bao, Xuebing
    Ma, Jiliang
    Wu, Ying
    Chen, Xiaoping
    Liu, Daoyin
    Liang, Cai
    Industrial and Engineering Chemistry Research, 2022, 61 (25): : 8973 - 8981
  • [12] Optimization of CO2 Capture from Simulated Flue Gas Using K2CO3/Al2O3 in a Micro Fluidized Bed Reactor
    Amiri, Mohsen
    Shahhosseini, Shahrokh
    ENERGY & FUELS, 2018, 32 (07) : 7978 - 7990
  • [13] The negative effects of SO2 on CO2 capture with K2CO3/Al2O3
    Wu, Ye
    Chen, Xiaoping
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 122 (02) : 1041 - 1049
  • [14] The negative effects of SO2 on CO2 capture with K2CO3/Al2O3
    Ye Wu
    Xiaoping Chen
    Journal of Thermal Analysis and Calorimetry, 2015, 122 : 1041 - 1049
  • [15] Hydrodynamics of bubbling fluidized bed for adsorption of CO2 with KOH/K2CO3
    Samani, Pedram
    Gharebagh, Rahmat Sotudeh
    Zarghami, Reza
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2019, 97 (S1): : 1317 - 1325
  • [16] K2CO3/Al2O3 for Capturing CO2 in Flue Gas from Power Plants. Part 2: Regeneration Behaviors of K2CO3/Al2O3
    Zhao, Chuanwen
    Chen, Xiaoping
    Zhao, Changsui
    ENERGY & FUELS, 2012, 26 (02) : 1406 - 1411
  • [17] K2CO3/Al2O3 for Capturing CO2 in Flue Gas from Power Plants. Part 5: Carbonation and Failure Behavior of K2CO3/Al2O3 in the Continuous CO2 Sorption-Desorption System
    Wu, Ye
    Chen, Xiaoping
    Dong, Wei
    Zhao, Chuanwen
    Zhang, Zhonglin
    Liu, Daoyin
    Liang, Cai
    ENERGY & FUELS, 2013, 27 (08) : 4804 - 4809
  • [18] Hydrophobic interface-assisted synthesis of K2CO3/Al2O3 adsorbent pellets for CO2 capture
    Yang, Yuhang
    Zhao, Chuanwen
    Zeng, Pengxin
    Wang, Yuhao
    Qin, Xue
    Gao, Yueyue
    Guo, Yafei
    Wang, Ruilin
    Sun, Jian
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 317
  • [19] Development of CO2 capture capacity by using impregnation method in base condition for K2CO3/Al2O3
    Charoenchaipet, Jaruwan
    Piumsomboon, Pornpote
    Chalermsinsuwan, Benjapon
    ENERGY REPORTS, 2020, 6 : 25 - 31
  • [20] Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent
    Veselovskaya, Janna V.
    Derevschikov, Vladimir S.
    Kardash, Tatyana Yu.
    Stonkus, Olga A.
    Trubitsina, Tatiana A.
    Okunev, Aleksey G.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 17 : 332 - 340