Recent advances in g-C3N4 composites within four types of heterojunctions for photocatalytic CO2 reduction

被引:78
|
作者
Que, Meidan [1 ]
Cai, Weihua [1 ]
Chen, Jin [1 ]
Zhu, Liangliang [2 ]
Yang, Yawei [3 ]
机构
[1] Xian Univ Architecture & Technol, Coll Mat Sci & Engn, Xian 710055, Peoples R China
[2] Northwest Univ, Sch Chem Engn, Xian 710069, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Elect Sci & Engn, Elect Mat Res Lab, Xian 710049, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Carbon dioxide - Global warming;
D O I
10.1039/d0nr09177d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Studies of photocatalytic conversion of CO2 into hydrocarbon fuels, as a promising solution to alleviate global warming and energy issues, are booming in recent years. Researchers have focused their interest in developing g-C3N4 composite photocatalysts with intriguing features of robust light harvesting ability, excellent catalysis, and stable performance. Four types of heterojunctions (type-II, Z-scheme, S-scheme and Schottky) of the g-C3N4 composites are widely adopted. This review aims at presenting and comparing the photocatalytic mechanisms, characteristics, and performances of g-C3N4 composites concerning these four types of heterojunctions. Besides, perspectives and undergoing efforts for further development of g-C3N4 composite photocatalysts are discussed. This review would be helpful for researchers to gain a comprehensive understanding of the progress and future development trends of g-C3N4 composite heterojunctions for photocatalytic CO2 reduction.
引用
收藏
页码:6692 / 6712
页数:21
相关论文
共 50 条
  • [1] Construction of NiO/g-C3N4 p-n heterojunctions for enhanced photocatalytic CO2 reduction
    Wang, Linxia
    Dong, Yali
    Zhang, Jiayan
    Tao, Feifei
    Xu, Jingjing
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2022, 308
  • [2] Recent progress in modifications of g-C3N4 for photocatalytic hydrogen evolution and CO2 reduction
    Rana, Garima
    Dhiman, Pooja
    Kumar, Amit
    Dawi, Elmuez A.
    Sharma, Gaurav
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2024, 39 (01)
  • [3] Heterostructures based on g-C3N4 for the photocatalytic CO2 reduction
    Alekseev, Roman F.
    Saraev, Andrey A.
    Kurenkova, Anna Yu.
    Kozlova, Ekaterina A.
    [J]. RUSSIAN CHEMICAL REVIEWS, 2024, 93 (05)
  • [4] Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction
    Ye, Liqun
    Wu, Dan
    Chu, Ka Him
    Wang, Bo
    Xie, Haiquan
    Yip, Ho Yin
    Wong, Po Keung
    [J]. CHEMICAL ENGINEERING JOURNAL, 2016, 304 : 376 - 383
  • [5] NiO/g-C3N4 p-n Heterojunctions Wrapped by rGO for the Enhanced CO2 Photocatalytic Reduction
    Tao, Fei-Fei
    Dong, Yali
    Yang, Lingang
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (17) : 6709 - 6718
  • [6] Photocatalytic CO2 reduction over g-C3N4 based heterostructures: Recent progress and prospects
    Ghosh, Utpal
    Majumdar, Ankush
    Pal, Anjali
    [J]. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (01):
  • [7] NiO/g-C3N4 quantum dots for photocatalytic CO2 reduction
    Tao, Feifei
    Dong, Yali
    Yang, Lingang
    [J]. APPLIED SURFACE SCIENCE, 2023, 638
  • [8] A review on g-C3N4 for photocatalytic water splitting and CO2 reduction
    Ye, Sheng
    Wang, Rong
    Wu, Ming-Zai
    Yuan, Yu-Peng
    [J]. APPLIED SURFACE SCIENCE, 2015, 358 : 15 - 27
  • [9] Photocatalytic CO2 Reduction over g-C3N4 Based Materials
    Cai, Wei-Qin
    Zhang, Feng-Jun
    Kong, Cui
    Kai, Chun-Mei
    Oh, Won-Chun
    [J]. KOREAN JOURNAL OF MATERIALS RESEARCH, 2020, 30 (11): : 581 - 588
  • [10] g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction
    Sun, Zhuxing
    Wang, Haiqiang
    Wu, Zhongbiao
    Wang, Lianzhou
    [J]. CATALYSIS TODAY, 2018, 300 : 160 - 172