Exact Solution of the Anisotropic Special Transition in the O(n) Model in Two Dimensions

被引:18
|
作者
Dubail, Jerome [1 ]
Jacobsen, Jesper Lykke [1 ,2 ]
Saleur, Hubert [1 ,3 ]
机构
[1] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[2] LPTENS, F-75231 Paris, France
[3] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
关键词
CRITICAL-BEHAVIOR; LOOP MODELS; SURFACE; SYSTEMS; SLE;
D O I
10.1103/PhysRevLett.103.145701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The effect of surface exchange anisotropies is known to play an important role in magnetic critical and multicritical behavior at surfaces. We give an exact analysis of this problem in d=2 for the O(n) model using the Coulomb gas, conformal invariance, and integrability techniques. We obtain the full set of critical exponents at the anisotropic special transition-where the symmetry on the boundary is broken down to O(n(1))xO(n-n(1))-as a function of n(1). We also obtain the full phase diagram and crossover exponents. Crucial in this analysis is a new solution of the boundary Yang-Baxter equations for loop models. The appearance of the generalization of Schramm-Loewner evolution SLE(kappa,rho) is also discussed.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Exact solution for two-dimensional flow to a well in an anisotropic domain
    Fitts, CR
    GROUND WATER, 2006, 44 (01) : 99 - 101
  • [22] Exact solution of pulled, directed vesicles with sticky walls in two dimensions
    Owczarek, A. L.
    Prellberg, T.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (03)
  • [23] EXACT SOLUTION AND SURFACE CRITICAL-BEHAVIOR OF AN O(N) MODEL ON THE HONEYCOMB LATTICE
    BATCHELOR, MT
    SUZUKI, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (16): : L729 - L735
  • [24] EXACT SOLUTION OF THE O(3) NONLINEAR TWO-DIMENSIONAL SIGMA-MODEL
    WIEGMANN, PB
    JETP LETTERS, 1985, 41 (02) : 95 - 100
  • [25] Melting transition of a network model in two dimensions
    Gompper, G
    Kroll, DM
    EUROPEAN PHYSICAL JOURNAL E, 2000, 1 (2-3): : 153 - 157
  • [26] Melting transition of a network model in two dimensions
    G. Gompper
    D.M. Kroll
    The European Physical Journal E, 2000, 1 : 153 - 157
  • [27] Exact solution of two bosons in a trap potential: Transition to fragmentation
    Klaiman, S
    Moiseyev, N
    Cederbaum, LS
    PHYSICAL REVIEW A, 2006, 73 (01):
  • [28] Flow equation of N=1 supersymmetric O(N) nonlinear sigma model in two dimensions
    Aoki, Sinya
    Kikuchi, Kengo
    Onogi, Tetsuya
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02):
  • [29] EXACT TRANSITION-TEMPERATURE FOR AN ISING-MODEL IN 3 DIMENSIONS
    GRENSING, D
    HUBER, A
    JUTTNER, HU
    RUGE, C
    MUNIER, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (13): : L681 - L687
  • [30] Tricritical O(n) models in two dimensions
    Nienhuis, Bernard
    Guo, Wenan
    Blote, Henk W. J.
    PHYSICAL REVIEW E, 2008, 78 (06):