The reductions of an ideal I give a natural pathway to the properties of I, with the advantage of having fewer generators. In this paper we primarily focus on a conjecture about the reduction exponent of links of a broad class of primary ideals. The existence of an algebra structure on the Koszul and Eagon-Northcott resolutions is the main tool for detailing the known cases of the conjecture. In the last section we relate the conjecture to a formula involving the length of the first Koszul homology modules of these ideals. (C) 1997 Elsevier Science B.V.
机构:
Univ Claude Bernard Lyon 1, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, FranceUniv Claude Bernard Lyon 1, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
Fu, Lie
Li, Zhiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Shanghai Ctr Math Sci, 2005 Songhu Rd, Shanghai 20438, Peoples R ChinaUniv Claude Bernard Lyon 1, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
机构:
Nicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, PolandNicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland