Irreducible components of characteristic varieties

被引:11
|
作者
Smith, GG [1 ]
机构
[1] Columbia Univ, Dept Math, Barnard Coll, New York, NY 10027 USA
关键词
D O I
10.1016/S0022-4049(01)00109-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a dimension bound on the irreducible components of the characteristic variety of a system of linear partial differential equations defined from a suitable filtration of the Weyl algebra A(n). This generalizes an important consequence of the fact that a characteristic variety defined from the order filtration is involutive. More explicitly, we consider a filtration of A, induced by any vector (u, v) is an element of Z(n) x Z(n) such that the associated graded algebra is a commutative polynomial ring. Any finitely generated left A(n)-module M has a good filtration with respect to (u,v) and this gives rise to a characteristic variety Ch((u, v))(M) which depends only on (u,v) and M. When (u, v) = (0, 1), the characteristic variety is involutive and this implies that its irreducible components have dimension at least n. In general, the characteristic variety may fail to be involutive, but we are still able to prove that each irreducible component of Ch((u, v))(M) has dimension at least n. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:291 / 306
页数:16
相关论文
共 50 条
  • [1] Irreducible components of varieties of modules
    Crawley-Boevey, W
    Schröer, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 553 : 201 - 220
  • [2] On the number of irreducible components of commuting varieties
    Basili, R
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 149 (02) : 121 - 126
  • [3] Irreducible components of module varieties: An example
    Riedtmann, Ch.
    Rutscho, M.
    Smalo, S. O.
    JOURNAL OF ALGEBRA, 2011, 331 (01) : 130 - 144
  • [4] Closures in varieties of representations and irreducible components
    Goodearl, Kenneth R.
    Huisgen-Zimmermann, Birge
    ALGEBRA & NUMBER THEORY, 2018, 12 (02) : 379 - 410
  • [5] COUNTING IRREDUCIBLE COMPONENTS OF COMPLEX ALGEBRAIC VARIETIES
    Buergisser, Peter
    Scheiblechner, Peter
    COMPUTATIONAL COMPLEXITY, 2010, 19 (01) : 1 - 35
  • [6] Irreducible components of varieties of representations: the acyclic case
    B. Huisgen-Zimmermann
    I. Shipman
    Mathematische Zeitschrift, 2017, 287 : 1083 - 1107
  • [7] The boundary of the irreducible components for invariant subspace varieties
    Kosakowska, Justyna
    Schmidmcier, Markus
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (3-4) : 953 - 972
  • [8] Irreducible components of varieties of representations: the acyclic case
    Huisgen-Zimmermann, B.
    Shipman, I.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (3-4) : 1083 - 1107
  • [9] The boundary of the irreducible components for invariant subspace varieties
    Justyna Kosakowska
    Markus Schmidmeier
    Mathematische Zeitschrift, 2018, 290 : 953 - 972
  • [10] Counting Irreducible Components of Complex Algebraic Varieties
    Peter Bürgisser
    Peter Scheiblechner
    computational complexity, 2010, 19 : 1 - 35