The boundary of the irreducible components for invariant subspace varieties

被引:6
|
作者
Kosakowska, Justyna [1 ]
Schmidmcier, Markus [2 ]
机构
[1] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
[2] Florida Atlantic Univ, Dept Math Sci, 777 Glades Rd, Boca Raton, FL 33431 USA
关键词
Nilpotent operator; Invariant subspace; Partial order; Degeneration; Littlewood-Richardson tableau; LITTLEWOOD-RICHARDSON TABLEAUX; LINEAR-OPERATORS; DEGENERATIONS; REPRESENTATIONS; EXTENSIONS; NILPOTENT; MODULES; QUIVERS;
D O I
10.1007/s00209-018-2047-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given partitions alpha, beta, gamma, the short exact sequences 0 -> N-alpha -> N-beta -> N-gamma -> 0 of nilpotent linear operators of Jordan types alpha, beta, gamma, respectively, define a constructible subset V-alpha,gamma(beta) of an affine variety. Geometrically, the varieties V-alpha,gamma(beta) are of particular interest as they occur naturally and since they typically consist of several irreducible components. In fact, each Littlewood-Richardson tableau Gamma of shape (alpha, beta, gamma) contributes one irreducible component (V) over bar (Gamma). We consider the partial order Gamma <=(boundary) (Gamma) over tilde on LR-tableaux which is the transitive closure of the relation given by V (Gamma) over tilde boolean AND (V) over bar (Gamma) not equal empty set. In this paper we compare the boundary relation with partial orders given by algebraic, combinatorial and geometric conditions. It is known that in the case where the parts of alpha are at most two, all those partial orders are equivalent. We prove that those partial orders are also equivalent in the case where beta\gamma is a horizontal and vertical strip. Moreover, we discuss how the orders differ in general.
引用
收藏
页码:953 / 972
页数:20
相关论文
共 50 条
  • [1] The boundary of the irreducible components for invariant subspace varieties
    Justyna Kosakowska
    Markus Schmidmeier
    Mathematische Zeitschrift, 2018, 290 : 953 - 972
  • [2] Irreducible components of characteristic varieties
    Smith, GG
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 165 (03) : 291 - 306
  • [3] Irreducible components of varieties of modules
    Crawley-Boevey, W
    Schröer, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 553 : 201 - 220
  • [4] On the number of irreducible components of commuting varieties
    Basili, R
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 149 (02) : 121 - 126
  • [5] Irreducible components of module varieties: An example
    Riedtmann, Ch.
    Rutscho, M.
    Smalo, S. O.
    JOURNAL OF ALGEBRA, 2011, 331 (01) : 130 - 144
  • [6] Closures in varieties of representations and irreducible components
    Goodearl, Kenneth R.
    Huisgen-Zimmermann, Birge
    ALGEBRA & NUMBER THEORY, 2018, 12 (02) : 379 - 410
  • [7] COUNTING IRREDUCIBLE COMPONENTS OF COMPLEX ALGEBRAIC VARIETIES
    Buergisser, Peter
    Scheiblechner, Peter
    COMPUTATIONAL COMPLEXITY, 2010, 19 (01) : 1 - 35
  • [8] Irreducible components of varieties of representations: the acyclic case
    B. Huisgen-Zimmermann
    I. Shipman
    Mathematische Zeitschrift, 2017, 287 : 1083 - 1107
  • [9] Irreducible components of varieties of representations: the acyclic case
    Huisgen-Zimmermann, B.
    Shipman, I.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (3-4) : 1083 - 1107
  • [10] Counting Irreducible Components of Complex Algebraic Varieties
    Peter Bürgisser
    Peter Scheiblechner
    computational complexity, 2010, 19 : 1 - 35