Controlled dephasing in single-dot Aharonov-Bohm interferometers

被引:21
|
作者
Moldoveanu, V.
Tolea, M.
Tanatar, B.
机构
[1] Natl Inst Mat Phys, Bucharest, Romania
[2] Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey
关键词
D O I
10.1103/PhysRevB.75.045309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the Fano effect and the visibility of the Aharonov-Bohm oscillations for a mesoscopic interferometer with an embedded quantum dot in the presence of a nearby second dot. When the electron-electron interaction between the two dots is considered the nearby dot acts as a charge detector. We compute the currents through the interferometer and detector within the Keldysh formalism and the self-energy of the nonequilibrium Green's functions is found up to the second order in the interaction strength. The current formula contains a correction to the Landauer-Buttiker formula. Its contribution to transport and dephasing is discussed. As the bias applied on the detector is increased, the amplitude of both the Fano resonance and Aharonov-Bohm oscillations are considerably reduced due to controlled dephasing. This result is explained by analyzing the behavior of the imaginary part of the interaction self-energy as a function of energy and bias. We emphasize as well the role of the ring-dot coupling. Our theoretical results are consistent with the experimental observation of Buks [Nature 391, 871 (1998)].
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Lorentz force effects for graphene Aharonov-Bohm interferometers
    Mrenca-Kolasinska, A.
    Szafran, B.
    PHYSICAL REVIEW B, 2016, 94 (19)
  • [22] Aharonov-Bohm effect in GaAs/GaAlAs ring interferometers
    Pedersen, S
    Hansen, AE
    Kristensen, A
    Sorensen, CB
    Lindelof, PE
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2000, 74 (1-3): : 234 - 238
  • [23] Time-dependent transport in Aharonov-Bohm interferometers
    Kotimaki, V.
    Cicek, E.
    Siddiki, A.
    Rasanen, E.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [24] Stepped graphene-based Aharonov-Bohm interferometers
    Nguyen, V. Hung
    Charlier, J-C
    2D MATERIALS, 2019, 6 (04)
  • [25] Aharonov-Bohm oscillation amplitude in small ballistic interferometers
    Tkachenko, VA
    Kvon, ZD
    Sheglov, DV
    Latyshev, AV
    Toropov, AI
    Tkachenko, OA
    Baksheyev, DG
    Aseev, AL
    JETP LETTERS, 2004, 79 (03) : 136 - 140
  • [26] Phase measurements in open and closed Aharonov-Bohm interferometers
    Aharony, A
    Entin-Wohlman, O
    Imry, Y
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 29 (1-2): : 283 - 288
  • [27] Transport properties of a single-quantum dot Aharonov-Bohm interferometer
    D. N. Son
    N. Arboleda
    W. A. Dino
    H. Kasai
    The European Physical Journal B, 2007, 57 : 27 - 35
  • [28] Manipulating quantum coherence of charge states in interacting double-dot Aharonov-Bohm interferometers
    Jin, Jinshuang
    Wang, Shikuan
    Zhou, Jiahuan
    Zhang, Wei-Min
    Yan, YiJing
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [29] Transport properties of a single-quantum dot Aharonov-Bohm interferometer
    Son, D. N.
    Arboleda, N., Jr.
    Dino, W. A.
    Kasai, H.
    EUROPEAN PHYSICAL JOURNAL B, 2007, 57 (01): : 27 - 35
  • [30] Kondo effect in transport through Aharonov-Bohm and Aharonov-Casher interferometers
    Lobos, A. M.
    Aligia, A. A.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (19) : 3306 - 3311