Hybridization of Genetic and Quantum Algorithm for Gene Selection and Classification of Microarray Data

被引:0
|
作者
Abderrahim, Allani [1 ]
Talbi, El-Ghazali [2 ]
Khaled, Mellouli [3 ]
机构
[1] Inst Super Gest, 41 Rue Liberte, Cite Bouchoucha 2000, Bardo, Tunisia
[2] LIFL INRIA Futurs, Cite Sci, Bat M3, F-59655 Villeneuve Dascq, France
[3] Commerciales Carthage, Inst Hautes Estudes, Tunis, Tunisia
关键词
VECTOR MACHINE CLASSIFICATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, we hybridize the Genetic Quantum Algorithm with the Support Vector Machines classifier for gene selection and classification of high dimensional Microarray Data. We named our algorithm GQA(SV M). Its purpose is to identify a small subset of genes that could be used to separate two classes of samples with high accuracy. A comparison of the approach with different methods of literature, in particular GA(SV M) and PSOSV M [2], was realized on six different datasets issued of microarray experiments dealing with cancer (leukemia, breast, colon, ovarian, prostate, and lung) and available on Web. The experiments clearifzed the very good performances of the method. A first contribution shows that the algorithm GQA(SV M) is able to find genes of interest and improve the classification on a meaningful way. A second important contribution consists of the actual discovery of new and challenging results on datasets used.
引用
收藏
页码:2226 / +
页数:3
相关论文
共 50 条
  • [21] Classification of cancer cells and gene selection based on microarray data using MOPSO algorithm
    Rahimi, Mohammad Reza
    Makarem, Dorna
    Sarspy, Sliva
    Mahdavi, Sobhan Akhavan
    Albaghdadi, Mustafa Fahem
    Armaghan, Seyed Mostafa
    [J]. JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (16) : 15171 - 15184
  • [22] Ensemble gene selection by grouping for microarray data classification
    Liu, Huawen
    Liu, Lei
    Zhang, Huijie
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2010, 43 (01) : 81 - 87
  • [23] Advances in metaheuristics for gene selection and classification of microarray data
    Duval, Beatrice
    Hao, Jin-Kao
    [J]. BRIEFINGS IN BIOINFORMATICS, 2010, 11 (01) : 127 - 141
  • [24] A STUDY ON GENE SELECTION AND CLASSIFICATION ALGORITHMS FOR CLASSIFICATION OF MICROARRAY GENE EXPRESSION DATA
    Chin, Yeo Lee
    Deris, Safaai
    [J]. JURNAL TEKNOLOGI, 2005, 43
  • [25] Random forest for gene selection and microarray data classification
    Moorthy, Kohbalan
    Mohamad, Mohd Saberi
    [J]. BIOINFORMATION, 2011, 7 (03) : 142 - 146
  • [26] Random Forest for Gene Selection and Microarray Data Classification
    Moorthy, Kohbalan
    Mohamad, Mohd Saberi
    [J]. KNOWLEDGE TECHNOLOGY, 2012, 295 : 174 - 183
  • [27] Virtual gene: A gene selection algorithm for sample classification on microarray datasets
    Xu, X
    Zhang, AD
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 1038 - 1045
  • [28] Hybrid feature selection using micro genetic algorithm on microarray gene expression data
    Pragadeesh, C.
    Jeyaraj, Rohana
    Siranjeevi, K.
    Abishek, R.
    Jeyakumar, G.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (03) : 2241 - 2246
  • [29] Improving feature subset selection using a genetic algorithm for microarray gene expression data
    Tan, Feng
    Fu, Xuezheng
    Zhang, Yanqing
    Bourgeois, Anu G.
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2514 - 2519
  • [30] Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data
    Pino Angulo A.
    Shin K.
    Velázquez-Rodríguez C.
    [J]. Pino Angulo, Adrian (apinoa85@gmail.com), 2018, Springer Verlag (07) : 399 - 410