Too Big to Mail: On the Way to Publish Large-scale Mobile Analytics Data

被引:0
|
作者
Peltonen, Ella [1 ]
Lagerspetz, Eemil [1 ]
Nurmi, Petteri [1 ,2 ]
Tarkoma, Sasu [1 ,2 ]
机构
[1] Univ Helsinki, Dept Comp Sci, HIIT, Helsinki, Finland
[2] Univ Helsinki, Dept Comp Sci, POB 64, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Big Data; Mobile Analytics; Energy-awareness;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Carat project started in 2012 has collected over 1.5 TB of data from over 850,000 mobile users all over the world. The project uses Apache Thrift to transmit data, and Apache Spark to run data analysis tasks, and the gist of the Carat analysis method has been published. While the Carat application code is open source, the data is much harder to share because of its size and privacy concerns. This paper outlines the challenges in sharing such a large-scale dataset with detailed information about smart devices, applications, and their users, and presents some solutions to these challenges.
引用
收藏
页码:2374 / 2377
页数:4
相关论文
共 50 条
  • [31] An industrial big data pipeline for data-driven analytics maintenance applications in large-scale smart manufacturing facilities
    O’Donovan P.
    Leahy K.
    Bruton K.
    O’Sullivan D.T.J.
    [J]. Journal of Big Data, 2015, 2 (01)
  • [32] Large-scale secure model learning and inference using synthetic data for IoT-based big data analytics
    Tekchandani, Prakash
    Das, Ashok Kumar
    Kumar, Neeraj
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2024, 119
  • [33] Large Scale Analytics of Vector plus Raster Big Spatial Data
    Eldawy, Ahmed
    Niu, Lyuye
    Haynes, David
    Su, Zhiba
    [J]. 25TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2017), 2017,
  • [34] Inference of Big-Five Personality Using Large-scale Networked Mobile and Appliance Data
    Tong, Catherine
    Harari, Gabriella M.
    Chieh, Angela
    Bellahsen, Otmane
    Vegreville, Matthieu
    Roitmann, Eva
    Lane, Nicholas D.
    [J]. MOBISYS'18: PROCEEDINGS OF THE 16TH ACM INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS, APPLICATIONS, AND SERVICES, 2018, : 530 - 530
  • [35] The Piraeus AIS dataset for large-scale maritime data analytics
    Tritsarolis, Andreas
    Kontoulis, Yannis
    Theodoridis, Yannis
    [J]. DATA IN BRIEF, 2022, 40
  • [36] Building and Operating a Large-Scale Enterprise Data Analytics Platform
    Bauer, Daniel
    Froese, Florian
    Garces-Erice, Luis
    Giblin, Chris
    Labbi, Abdel
    Nagy, Zoltan A.
    Pardon, Niels
    Rooney, Sean
    Urbanetz, Peter
    Vetsch, Pascal
    Wespi, Andreas
    [J]. BIG DATA RESEARCH, 2021, 23
  • [37] Large-scale Data Integration for Facilities Analytics: Challenges and Opportunities
    Thumati, Balaje T.
    Subramania, Halasya Siva
    Shastri, Rajeev
    Kumar, Karthik Kalyana
    Hessner, Nicole
    Villa, Vincent
    Page, Aaron
    Followell, David
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3532 - 3538
  • [38] Riffle: Optimized Shuffle Service for Large-Scale Data Analytics
    Zhang, Haoyu
    Cho, Brian
    Seyfe, Ergin
    Ching, Avery
    Freedman, Michael J.
    [J]. EUROSYS '18: PROCEEDINGS OF THE THIRTEENTH EUROSYS CONFERENCE, 2018,
  • [39] Understanding collective human movement dynamics during large-scale events using big geosocial data analytics
    Fan, Junchuan
    Stewart, Kathleen
    [J]. COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2021, 87
  • [40] HIB-tree: An efficient index method for the big data analytics of large-scale human activity trajectories
    Chen, Xu
    Zhang, Jie
    Xu, Zheng
    Liu, Jin
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 86 : 1269 - 1278