Too Big to Mail: On the Way to Publish Large-scale Mobile Analytics Data

被引:0
|
作者
Peltonen, Ella [1 ]
Lagerspetz, Eemil [1 ]
Nurmi, Petteri [1 ,2 ]
Tarkoma, Sasu [1 ,2 ]
机构
[1] Univ Helsinki, Dept Comp Sci, HIIT, Helsinki, Finland
[2] Univ Helsinki, Dept Comp Sci, POB 64, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Big Data; Mobile Analytics; Energy-awareness;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Carat project started in 2012 has collected over 1.5 TB of data from over 850,000 mobile users all over the world. The project uses Apache Thrift to transmit data, and Apache Spark to run data analysis tasks, and the gist of the Carat analysis method has been published. While the Carat application code is open source, the data is much harder to share because of its size and privacy concerns. This paper outlines the challenges in sharing such a large-scale dataset with detailed information about smart devices, applications, and their users, and presents some solutions to these challenges.
引用
收藏
页码:2374 / 2377
页数:4
相关论文
共 50 条
  • [1] Performance Evaluation of Big Data Frameworks for Large-Scale Data Analytics
    Veiga, Jorge
    Exposito, Roberto R.
    Pardo, Xoan C.
    Taboada, Guillermo L.
    Tourino, Juan
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 424 - 431
  • [2] Distributed optimization over large-scale systems for big data analytics
    Shahbazian, Reza
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2021, 19 (02): : 309 - 310
  • [3] Distributed optimization over large-scale systems for big data analytics
    Reza Shahbazian
    [J]. 4OR, 2021, 19 : 309 - 310
  • [4] BANKSAFE: Visual analytics for big data in large-scale computer networks
    Fischer, Fabian
    Fuchs, Johannes
    Mansmann, Florian
    Keim, Daniel A.
    [J]. INFORMATION VISUALIZATION, 2015, 14 (01) : 51 - 61
  • [5] Big Data Analytics for Large-scale Wireless Networks: Challenges and Opportunities
    Dai, Hong-Ning
    Wong, Raymond Chi-Wing
    Wang, Hao
    Zheng, Zibin
    Vasilakos, Athanasios V.
    [J]. ACM COMPUTING SURVEYS, 2019, 52 (05)
  • [6] Big Data, Big Results: Knowledge Discovery in Output from Large-Scale Analytics
    McCormick, Tyler H.
    Ferrell, Rebecca
    Karr, Alan F.
    Ryan, Patrick B.
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2014, 7 (05) : 404 - 412
  • [7] Efficient Large-scale Medical Data (eHealth Big Data) Analytics in Internet of Things
    Plageras, Andreas P.
    Stergiou, Christos
    Kokkonis, George
    Psannis, Kostas E.
    Ishibashi, Yutaka
    Kim, Byung-Gyu
    Gupta, B. Brij
    [J]. 2017 IEEE 19TH CONFERENCE ON BUSINESS INFORMATICS (CBI), VOL 2, 2017, 2 : 21 - 27
  • [8] Software abstractions for large-scale deep learning models in big data analytics
    Khan, Ayaz H.
    Qamar, Ali Mustafa
    Yusuf, Aneeq
    Khan, Rehanullah
    [J]. International Journal of Advanced Computer Science and Applications, 2019, 10 (04): : 557 - 566
  • [9] Big Data for Enhanced Learning Analytics: A Case for Large-Scale Comparative Assessments
    Korfiatis, Nikolaos
    [J]. METADATA AND SEMANTICS RESEARCH, MTSR 2013, 2013, 390 : 225 - 233
  • [10] Software Abstractions for Large-Scale Deep Learning Models in Big Data Analytics
    Khan, Ayaz H.
    Qamar, Ali Mustafa
    Yusuf, Aneeq
    Khan, Rehanullah
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (04) : 557 - 566