Quantum topology identification with deep neural networks and quantum walks

被引:30
|
作者
Ming, Yurui [1 ]
Lin, Chin-Teng [1 ]
Bartlett, Stephen D. [2 ]
Zhang, Wei-Wei [2 ]
机构
[1] Univ Technol Sydney, Ctr Artificial Intelligence, Sch Comp Sci, Sydney, NSW, Australia
[2] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
ELECTRICAL DETECTION; SPIN POLARIZATION;
D O I
10.1038/s41524-019-0224-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Topologically ordered materials may serve as a platform for new quantum technologies, such as fault-tolerant quantum computers. To fulfil this promise, efficient and general methods are needed to discover and classify new topological phases of matter. We demonstrate that deep neural networks augmented with external memory can use the density profiles formed in quantum walks to efficiently identify properties of a topological phase as well as phase transitions. On a trial topological ordered model, our method's accuracy of topological phase identification reaches 97.4%, and is shown to be robust to noise on the data. Furthermore, we demonstrate that our trained DNN is able to identify topological phases of a perturbed model, and predict the corresponding shift of topological phase transitions without learning any information about the perturbations in advance. These results demonstrate that our approach is generally applicable and may be used to identify a variety of quantum topological materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Quantum topology identification with deep neural networks and quantum walks
    Yurui Ming
    Chin-Teng Lin
    Stephen D. Bartlett
    Wei-Wei Zhang
    [J]. npj Computational Materials, 5
  • [2] Topology identification of autonomous quantum dynamical networks
    Gherardini, Stefano
    van Waarde, Henk J.
    Tesi, Pietro
    Caruso, Filippo
    [J]. PHYSICAL REVIEW A, 2022, 106 (05)
  • [3] Training deep quantum neural networks
    Kerstin Beer
    Dmytro Bondarenko
    Terry Farrelly
    Tobias J. Osborne
    Robert Salzmann
    Daniel Scheiermann
    Ramona Wolf
    [J]. Nature Communications, 11
  • [4] Training deep quantum neural networks
    Beer, Kerstin
    Bondarenko, Dmytro
    Farrelly, Terry
    Osborne, Tobias J.
    Salzmann, Robert
    Scheiermann, Daniel
    Wolf, Ramona
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [5] Solving quantum master equations with deep quantum neural networks
    Liu, Zidu
    Duan, L-M
    Deng, Dong-Ling
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [6] Deep quantum neural networks on a superconducting processor
    Xiaoxuan Pan
    Zhide Lu
    Weiting Wang
    Ziyue Hua
    Yifang Xu
    Weikang Li
    Weizhou Cai
    Xuegang Li
    Haiyan Wang
    Yi-Pu Song
    Chang-Ling Zou
    Dong-Ling Deng
    Luyan Sun
    [J]. Nature Communications, 14
  • [7] QDNN: deep neural networks with quantum layers
    Chen Zhao
    Xiao-Shan Gao
    [J]. Quantum Machine Intelligence, 2021, 3
  • [8] Deep neural networks for quantum circuit mapping
    Giovanni Acampora
    Roberto Schiattarella
    [J]. Neural Computing and Applications, 2021, 33 : 13723 - 13743
  • [9] Deep quantum neural networks on a superconducting processor
    Pan, Xiaoxuan
    Lu, Zhide
    Wang, Weiting
    Hua, Ziyue
    Xu, Yifang
    Li, Weikang
    Cai, Weizhou
    Li, Xuegang
    Wang, Haiyan
    Song, Yi-Pu
    Zou, Chang-Ling
    Deng, Dong-Ling
    Sun, Luyan
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [10] QDNN: deep neural networks with quantum layers
    Zhao, Chen
    Gao, Xiao-Shan
    [J]. QUANTUM MACHINE INTELLIGENCE, 2021, 3 (01)