Besov-type spaces for the Dunkl operator on the real line

被引:13
|
作者
Kamoun, Lotfi [1 ]
机构
[1] Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
关键词
Dunkl operator; Dunkl transform; Bochner-Riesz means; partial Dunkl integrals; Besov-Dunkl spaces;
D O I
10.1016/j.cam.2005.06.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we shall introduce functions spaces as subspaces of L-p that we call Besov-Dunkl spaces. We provide characterizations of these spaces involving Bochner-Riesz means associated to the Dunkl operator and partial Dunkl integrals. (c) 2005 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:56 / 67
页数:12
相关论文
共 50 条
  • [31] Generalized Besov-type and Triebel-Lizorkin-type spaces
    Haroske, Dorothee D.
    Liu, Zhen
    STUDIA MATHEMATICA, 2023, 273 (02) : 161 - 199
  • [32] Invertibility of Frame Operators on Besov-Type Decomposition Spaces
    Romero, Jose Luis
    van Velthoven, Jordy Timo
    Voigtlaender, Felix
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (05)
  • [33] Multipliers and Closures of Besov-Type Spaces in the Bloch Space
    Li, Dongxia
    Yang, Liu
    FILOMAT, 2021, 35 (02) : 645 - 655
  • [34] INNER FUNCTIONS IN THE MOBIUS INVARIANT BESOV-TYPE SPACES
    Perez-Gonzalez, Fernando
    Rattya, Jouni
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 : 751 - 770
  • [35] Invertibility of Frame Operators on Besov-Type Decomposition Spaces
    José Luis Romero
    Jordy Timo van Velthoven
    Felix Voigtlaender
    The Journal of Geometric Analysis, 2022, 32
  • [36] Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees
    Koskela, Pekka
    Wang, Zhuang
    POTENTIAL ANALYSIS, 2020, 53 (04) : 1317 - 1346
  • [37] Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees
    Pekka Koskela
    Zhuang Wang
    Potential Analysis, 2020, 53 : 1317 - 1346
  • [38] New applications of Besov-type and Triebel-Lizorkin-type spaces
    Sawano, Yoshihiro
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) : 73 - 85
  • [39] Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces
    Dachun Yang
    Wen Yuan
    Ciqiang Zhuo
    Revista Matemática Complutense, 2014, 27 : 93 - 157
  • [40] New Besov-type spaces and Triebel-Lizorkin-type spaces including Q spaces
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) : 451 - 480