On Ergodic Sum Capacity of Fading Cognitive Multiple-Access and Broadcast Channels

被引:165
|
作者
Zhang, Rui [1 ]
Cui, Shuguang [2 ]
Liang, Ying-Chang [1 ]
机构
[1] ASTAR, Inst Infocomm Res, Singapore, Singapore
[2] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Broadcast channel; cognitive radio; convex optimization; dynamic resource allocation; ergodic capacity; fading channel; interference temperature; multiple-access channel; spectrum sharing; time-division multiple access (TDMA); OPTIMAL RESOURCE-ALLOCATION; POWER ALLOCATION; PART I; RADIO; LIMITS;
D O I
10.1109/TIT.2009.2030449
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the information-theoretic limits of a secondary or cognitive radio (CR) network under spectrum sharing with an existing primary radio network. In particular, the fading cognitive multiple-access channel (C-MAC) is first studied, where multiple secondary users transmit to the secondary base station (BS) under both individual transmit-power constraints and a set of interference-power constraints each applied at one of the primary receivers. This paper considers the long-term (LT) or the short-term (ST) transmit-power constraint over the fading states at each secondary transmitter, combined with the LT or ST interference-power constraint at each primary receiver. In each case, the optimal power allocation scheme is derived for the secondary users to achieve the ergodic sum capacity of the fading C-MAC, as well as the conditions for the optimality of the dynamic time-division multiple-access (D-TDMA) scheme in the secondary network. The fading cognitive broadcast channel (C-BC) that models the downlink transmission in the secondary network is then studied under the LT/ST transmit-power constraint at the secondary BS jointly with the LT/ST interference-power constraint at each of the primary receivers. It is shown that D-TDMA is indeed optimal for achieving the ergodic sum capacity of the fading C-BC for all combinations of transmit-power and interference-power constraints.
引用
收藏
页码:5161 / 5178
页数:18
相关论文
共 50 条
  • [21] Capacity Bounds for Wireless Ergodic Fading Broadcast Channels with Partial CSIT
    Farsani, Reza K.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 927 - 931
  • [22] Linear Relaying for the Gaussian Multiple-Access and Broadcast Channels
    del Coso, Aitor
    Ibars, Christian
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2009, 8 (04) : 2024 - 2035
  • [23] On the duality between general multiple-access/broadcast channels
    Jindal, N
    Vishwanath, S
    Goldsmith, A
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 313 - 313
  • [24] Minimizing transmit power for fading multiple-access channels
    Mecking, M
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 494 - 494
  • [25] ACTIVE USER COOPERATION IN FADING MULTIPLE-ACCESS CHANNELS
    Chatterjee, Debdeep
    Wong, Tan F.
    2008 IEEE MILITARY COMMUNICATIONS CONFERENCE: MILCOM 2008, VOLS 1-7, 2008, : 251 - 257
  • [26] Capacity and optimal resource allocation for fading broadcast channels - Part I: Ergodic capacity
    Li, LF
    Goldsmith, AJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (03) : 1083 - 1102
  • [27] Performance Analysis of Cognitive Radio Multiple-Access Channels Over Dynamic Fading Environments
    Khalid A. Qaraqe
    Sabit Ekin
    Tarun Agarwal
    Erchin Serpedin
    Wireless Personal Communications, 2013, 68 : 1031 - 1045
  • [28] Sum-Capacity of Ergodic Fading Interference and Compound Multiaccess Channels
    Sankar, Lalitha
    Erkip, Elza
    Poor, H. Vincent
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 2712 - 2716
  • [29] Performance Analysis of Cognitive Radio Multiple-Access Channels Over Dynamic Fading Environments
    Qaraqe, Khalid A.
    Ekin, Sabit
    Agarwal, Tarun
    Serpedin, Erchin
    WIRELESS PERSONAL COMMUNICATIONS, 2013, 68 (03) : 1031 - 1045
  • [30] On the capacity of some uncoordinated multiple-access channels
    Gober, P
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 39 - 39