Between the Poles of Data-Driven and Mechanistic Modeling for Process Operation

被引:79
|
作者
Solle, Doerte [1 ]
Hitzmann, Bernd [2 ]
Herwig, Christoph [3 ]
Remelhe, Manuel Pereira [4 ]
Ulonska, Sophia [5 ]
Wuerth, Lynn [4 ]
Prata, Adrian [4 ]
Steckenreiter, Thomas [4 ]
机构
[1] Leibniz Univ Hannover, Inst Tech Chem, Callinstr 5, D-30167 Hannover, Germany
[2] Univ Hohenheim, Inst Food Sci & Biotechnol, Dept Proc Analyt & Cereal Sci, Garbenstr 23, D-70599 Stuttgart, Germany
[3] TU Wien, Inst Chem Environm & Biol Engn, Christian Doppler Lab Mech & Physiol Methods Impr, Gumpendorfer Str 1a, A-1060 Vienna, Austria
[4] Bayer AG, Kaiser Wilhelm Allee, D-51373 Leverkusen, Germany
[5] TU Wien, Inst Chem Environm & Biol Engn, Res Div Biochem Engn, Gumpendorfer Str 1a, A-1060 Vienna, Austria
关键词
Case studies; Chemometric models; Hybrid models; Modeling methodology; Validation; FED-BATCH CULTURES; OVERFLOW METABOLISM; PREDICTIVE CONTROL; EXPERT-SYSTEM; CELL-CULTURE; KNOWLEDGE; GROWTH; CALIBRATION; BIOPROCESS; CHEMOMETRICS;
D O I
10.1002/cite.201600175
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The best method for process control is the use of model-based solutions, based on process analytical technology for online monitoring of critical process variables, product quality attributes, or a holistic process state estimation. Mechanistic models as well as data-driven techniques are essential for real-time process monitoring. Their main characteristics, advantages and disadvantages, and the link between both are discussed as well as the synergetic effects, benefits, and drawbacks resulting from their combination. Aspects and differences of the computational model life cycle management are highlighted.
引用
收藏
页码:542 / 561
页数:20
相关论文
共 50 条
  • [31] Data-driven Process Prioritization in Process Networks
    Kratsch, Wolfgang
    Manderscheid, Jonas
    Reissner, Daniel
    Roeglinger, Maximilian
    [J]. DECISION SUPPORT SYSTEMS, 2017, 100 : 27 - 40
  • [32] Industrial Application of Data-Driven Process Monitoring with an Automatic Selection Strategy for Modeling Data
    Sun, Wei
    Zhou, Zhuoteng
    Ma, Fangyuan
    Wang, Jingde
    Ji, Cheng
    [J]. PROCESSES, 2023, 11 (02)
  • [33] Data-Driven Power System Operation: Exploring the Balance Between Cost and Risk
    Cremer, Jochen L.
    Konstantelos, Ioannis
    Tindemans, Simon H.
    Strbac, Goran
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (01) : 791 - 801
  • [34] Data-Driven Synthetic Modeling of Trees
    Zhang, Xiaopeng
    Li, Hongjun
    Dai, Mingrui
    Ma, Wei
    Quan, Long
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (09) : 1214 - 1226
  • [35] Data-driven modeling of acoustical instruments
    Schoner, B
    Cooper, C
    Douglas, C
    Gershenfed, N
    [J]. JOURNAL OF NEW MUSIC RESEARCH, 1999, 28 (02) : 81 - 89
  • [36] Data-Driven multiscale modeling in mechanics
    Karapiperis, K.
    Stainier, L.
    Ortiz, M.
    Andrade, J. E.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 147
  • [37] On the Data-Driven Modeling of Reactive Extrusion
    Ibanez, Ruben
    Casteran, Fanny
    Argerich, Clara
    Ghnatios, Chady
    Hascoet, Nicolas
    Ammar, Amine
    Cassagnau, Philippe
    Chinesta, Francisco
    [J]. FLUIDS, 2020, 5 (02)
  • [38] Data-driven modeling of power networks
    Safaee, Bita
    Gugercin, Serkan
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4236 - 4241
  • [39] Data-driven Modeling of Airlines Pricing
    Lantseva, Anastasia
    Mukhina, Ksenia
    Nikishova, Anna
    Ivanov, Sergey
    Knyazkov, Konstantin
    [J]. 4TH INTERNATIONAL YOUNG SCIENTIST CONFERENCE ON COMPUTATIONAL SCIENCE, 2015, 66 : 267 - 276
  • [40] Data-driven modeling and control of droughts
    Zaniolo, Marta
    Giuliani, Matteo
    Castelletti, Andrea
    [J]. IFAC PAPERSONLINE, 2019, 52 (23): : 54 - 60